Marginal quantile regression for varying coefficient models with longitudinal data

被引:3
作者
Zhao, Weihua [1 ]
Zhang, Weiping [2 ]
Lian, Heng [3 ]
机构
[1] Nantong Univ, Sch Sci, 9 Seyuan Rd, Nantong 226000, Peoples R China
[2] Univ Sci & Technol China, Dept Stat & Finance, 96 Jinzhai Rd, Hefei 230026, Peoples R China
[3] City Univ Hong Kong, Dept Math, Kowloon Tong, 83 Tat Chee Ave, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Longitudinal data; Quadratic inference function; Quantile regression; Varying coefficient model; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; LINEAR-MODELS; SHRINKAGE; SPLINES;
D O I
10.1007/s10463-018-0684-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate the quantile varying coefficient model for longitudinal data, where the unknown nonparametric functions are approximated by polynomial splines and the estimators are obtained by minimizing the quadratic inference function. The theoretical properties of the resulting estimators are established, and they achieve the optimal convergence rate for the nonparametric functions. Since the objective function is non-smooth, an estimation procedure is proposed that uses induced smoothing and we prove that the smoothed estimator is asymptotically equivalent to the original estimator. Moreover, we propose a variable selection procedure based on the regularization method, which can simultaneously estimate and select important nonparametric components and has the asymptotic oracle property. Extensive simulations and a real data analysis show the usefulness of the proposed method.
引用
收藏
页码:213 / 234
页数:22
相关论文
共 45 条
[31]   Quadratic inference functions for varying-coefficient models with longitudinal data [J].
Qu, A ;
Li, RZ .
BIOMETRICS, 2006, 62 (02) :379-391
[32]   Improving generalised estimating equations using quadratic inference functions [J].
Qu, A ;
Lindsay, BG ;
Li, B .
BIOMETRIKA, 2000, 87 (04) :823-836
[33]   Generalized varying coefficient models for longitudinal data [J].
Senturk, Damla ;
Mueller, Hans-Georg .
BIOMETRIKA, 2008, 95 (03) :653-666
[35]  
van der Vaart AW., 2000, ASYMPTOTIC STAT
[36]   GENERALIZED VARYING COEFFICIENT MODELS: A SMOOTH VARIABLE SELECTION TECHNIQUE [J].
Verhasselt, Anneleen .
STATISTICA SINICA, 2014, 24 (01) :147-171
[37]   Shrinkage Estimation of the Varying Coefficient Model [J].
Wang, Hansheng ;
Xia, Yingcun .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (486) :747-757
[38]   QUANTILE REGRESSION IN PARTIALLY LINEAR VARYING COEFFICIENT MODELS [J].
Wang, Huixia Judy ;
Zhu, Zhongyi ;
Zhou, Jianhui .
ANNALS OF STATISTICS, 2009, 37 (6B) :3841-3866
[39]   Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements [J].
Wang, Lifeng ;
Li, Hongzhe ;
Huang, Jianhua Z. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (484) :1556-1569
[40]   Efficient semiparametric marginal estimation for longitudinal/clustered data [J].
Wang, N ;
Carroll, RJ ;
Lin, XH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (469) :147-157