Nose-Hoover thermostat length effect on thermal conductivity of single wall carbon nanotubes

被引:28
作者
Shelly, Robert A. [1 ]
Toprak, Kasim [1 ]
Bayazitoglu, Yildiz [1 ]
机构
[1] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA
关键词
Molecular dynamics; Conduction; Carbon nanotube; Thermal conductivity; MOLECULAR-DYNAMICS SIMULATIONS; HEAT-CONDUCTION;
D O I
10.1016/j.ijheatmasstransfer.2010.06.054
中图分类号
O414.1 [热力学];
学科分类号
摘要
Non-equilibrium molecular dynamics simulations are used to determine the thermal conductivities of single wall carbon nanotubes. By fixing opposing ends of an armchair single wall carbon nanotube with a Nose-Hoover thermostat, the length dependence of thermal conductivities of single wall carbon nanotubes were studied in a vacuum. Specifically, single wall carbon nanotubes of 12.3 nm, 24.6 nm, and 36.9 nm lengths with varying fixed end temperatures were analyzed to determine thermal conductivities. In addition, the fixed end temperature lengths of single wall carbon nanotubes were varied to see convergence of the temperature profiles. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5884 / 5887
页数:4
相关论文
共 50 条
[11]   INVESTIGATION OF THERMAL CONDUCTIVITY OF SINGLE-WALL CARBON NANOTUBES [J].
Jafari, Mahmoud ;
Vaezzadeh, Majid ;
Mansouri, Momhamad ;
Hajnorouzi, Abazar .
THERMAL SCIENCE, 2011, 15 (02) :565-570
[12]   Thermal conductivity of individual single-wall carbon nanotubes [J].
Lukes, Jennifer R. ;
Zhong, Hongliang .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2007, 129 (06) :705-716
[13]   Analysis of energy and friction coefficient fluctuations of a Lennard-Jones liquid coupled to the Nose-Hoover thermostat [J].
Valenzuela, G. E. ;
Saavedra, J. H. ;
Rozas, R. E. ;
Toledo, P. G. .
MOLECULAR SIMULATION, 2015, 41 (07) :521-530
[14]   Ergodicity range of Nose-Hoover thermostat parameters and entropy-related properties of model water systems [J].
Kuznetsova, Tatyana ;
Kvamme, Bjmrn .
MOLECULAR SIMULATION, 1999, 21 (04) :205-225
[15]   Molecular dynamics simulation of thermal conductivity of single-wall carbon nanotubes [J].
Bi, KD ;
Chen, YF ;
Yang, JK ;
Wang, YJ ;
Chen, MH .
PHYSICS LETTERS A, 2006, 350 (1-2) :150-153
[16]   Effect of substrate on thermal conductivity of single-walled carbon nanotubes [J].
Savin, A. V. ;
Kivshar, Y. S. ;
Hu, B. .
EPL, 2009, 88 (02)
[17]   Dependencies of the thermal conductivity of individual single-walled carbon nanotubes [J].
Lee, J. W. ;
Meade, A. J. ;
Barrera, E. V. ;
Templeton, J. A. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART N-JOURNAL OF NANOMATERIALS NANOENGINEERING AND NANOSYSTEMS, 2010, 224 (1-2) :41-54
[18]   Thermal conductivity of single-walled carbon nanotubes [J].
Savin, Alexander V. ;
Hu, Bambi ;
Kivshar, Yuri S. .
PHYSICAL REVIEW B, 2009, 80 (19)
[19]   Thermal Conductivity of Water-filled Single-wall Carbon Nanotubes [J].
Chen, Hui ;
Bi, Kedong ;
Zhang, Chunwei .
2013 13TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2013, :1137-1140
[20]   Effects of doping, Stone Wales and vacancy defects on thermal conductivity of single-wall carbon nanotubes [J].
冯黛丽 ;
冯妍卉 ;
陈阳 ;
李威 ;
张欣欣 .
Chinese Physics B, 2013, 22 (01) :434-440