Data-driven scenario generation for two-stage stochastic programming

被引:17
作者
Bounitsis, Georgios L. [1 ]
Papageorgiou, Lazaros G. [1 ]
Charitopoulos, Vassilis M. [1 ]
机构
[1] UCL, Sargent Ctr Proc Syst Engn, Dept Chem Engn, Torrington Pl, London WC1E 7JE, England
基金
英国工程与自然科学研究理事会;
关键词
Scenario generation; Stochastic programming; Data -driven optimisation; Moment Matching Problem; Copulas; TREE GENERATION; UNCERTAINTY DISTRIBUTION; VINE COPULA; REDUCTION; OPTIMIZATION; ALGORITHMS; DISTANCE;
D O I
10.1016/j.cherd.2022.08.014
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Optimisation under uncertainty has always been a focal point within the Process Systems Engineering (PSE) research agenda. In particular, the efficient manipulation of large amount of data for the uncertain parameters constitutes a crucial condition for effectively tackling stochastic programming problems. In this context, this work proposes a new data-driven Mixed-Integer Linear Programming (MILP) model for the Distribution & Moment Matching Problem (DMP). For cases with multiple uncertain parameters a copula -based simulation of initial scenarios is employed as preliminary step. Moreover, the in-tegration of clustering methods and DMP in the proposed model is shown to enhance computational performance. Finally, we compare the proposed approach with state-of-the-art scenario generation methodologies. Through a number of case studies we high-light the benefits regarding the quality of the generated scenario trees by evaluating the corresponding obtained stochastic solutions.(c) 2022 The Authors. Published by Elsevier Ltd on behalf of Institution of Chemical Engineers. This is an open access article under the CC BY license (http://creative-commons.org/licenses/by/4.0/).
引用
收藏
页码:206 / 224
页数:19
相关论文
共 60 条
[1]   Pair-copula constructions of multiple dependence [J].
Aas, Kjersti ;
Czado, Claudia ;
Frigessi, Arnoldo ;
Bakken, Henrik .
INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (02) :182-198
[2]   Stochastic optimization based algorithms for process synthesis under uncertainty [J].
Acevedo, J ;
Pistikopoulos, EN .
COMPUTERS & CHEMICAL ENGINEERING, 1998, 22 (4-5) :647-671
[3]  
Bayraksan G., 2009, TUTORIALS OPERATIONS, P102, DOI DOI 10.1287/EDUC.1090.0065
[4]   Assessing solution quality in stochastic programs [J].
Bayraksan, Guezin ;
Morton, David P. .
MATHEMATICAL PROGRAMMING, 2006, 108 (2-3) :495-514
[5]   A Sequential Sampling Procedure for Stochastic Programming [J].
Bayraksan, Guezin ;
Morton, David P. .
OPERATIONS RESEARCH, 2011, 59 (04) :898-913
[6]  
Becker M., 2022, PearsonDS: Pearson Distribution System
[7]   Robust solutions of uncertain linear programs [J].
Ben-Tal, A ;
Nemirovski, A .
OPERATIONS RESEARCH LETTERS, 1999, 25 (01) :1-13
[8]   Robust discrete optimization and network flows [J].
Bertsimas, D ;
Sim, M .
MATHEMATICAL PROGRAMMING, 2003, 98 (1-3) :49-71
[9]   Optimization-Based Scenario Reduction for Data-Driven Two-Stage Stochastic Optimization [J].
Bertsimas, Dimitris ;
Mundru, Nishanth .
OPERATIONS RESEARCH, 2023, 71 (04) :1343-1361
[10]  
Birge JR, 2011, SPRINGER SER OPER RE, P3, DOI 10.1007/978-1-4614-0237-4