Global Well-Posedness for Dissipative Korteweg-de Vries Equations

被引:10
作者
Vento, Stephane [1 ]
机构
[1] Univ Paris Est, Lab Anal & Math Appl, F-77454 Champs Sur Marne 2, Marne La Vallee, France
来源
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA | 2011年 / 54卷 / 01期
关键词
KdV-like equations; Bourgain spaces; Cauchy problem; CAUCHY-PROBLEM; BURGERS-EQUATION; SOBOLEV SPACES; KDV EQUATION;
D O I
10.1619/fesi.54.119
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the well-posedness for dissipative KdV equations u(t) + u(xxx) + vertical bar D-x vertical bar(2 alpha)u + uu(x) = 0, 0 < alpha <= 1. An optimal bilinear estimate is obtained in Bourgain's type spaces, which provides global well-posedness in H-s(R), s > -3/4 for alpha <= 1/2 and s > -3/(5 - 2 alpha) for alpha > 1/2.
引用
收藏
页码:119 / 138
页数:20
相关论文
共 15 条