Extremal Graphs with Respect to the Zagreb Coindices

被引:0
作者
Ashrafi, A. R. [1 ,3 ]
Doslic, T. [2 ]
Hamzeh, A. [1 ]
机构
[1] Univ Kashan, Fac Sci, Dept Math, Kashan 8731751167, Iran
[2] Univ Zagreb, Fac Civil Engn, Zagreb 10000, Croatia
[3] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
SPECTRAL-RADIUS; INDEXES; DISTANCE; SQUARES; WIENER; SUM;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently introduced Zagreb coindices are a generalization of classical Zagreb indices of graphs. In this paper we determine the extremal values of these new topological invariants over some special classes of graphs. The extremal graphs are also presented.
引用
收藏
页码:85 / 92
页数:8
相关论文
共 21 条
[1]  
ASHRAFI AR, ZAGREB COINDIC UNPUB
[2]  
Braun J, 2005, MATCH-COMMUN MATH CO, V54, P163
[3]  
Das KC, 2004, MATCH-COMMUN MATH CO, P103
[4]   Maximizing the sum of the squares of the degrees of a graph [J].
Das, KC .
DISCRETE MATHEMATICS, 2004, 285 (1-3) :57-66
[5]   An upper bound on the sum of squares of degrees in a graph [J].
de Caen, D .
DISCRETE MATHEMATICS, 1998, 185 (1-3) :245-248
[6]   Vertex-Weighted Wiener Polynomials for Composite Graphs [J].
Doslic, Tomislav .
ARS MATHEMATICA CONTEMPORANEA, 2008, 1 (01) :66-80
[7]   TOPOLOGY OF SERIES-PARALLEL NETWORKS [J].
DUFFIN, RJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1965, 10 (02) :303-&
[8]  
Gutman I, 2004, MATCH-COMMUN MATH CO, P83
[9]  
Jantschi L., 2001, MOL TOPOLOGY
[10]   Some new results on distance-based graph invariants [J].
Khalifeh, M. H. ;
Yousefi-Azari, H. ;
Ashrafi, A. R. ;
Wagner, S. G. .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) :1149-1163