Mesh redistribution strategies and finite element schemes for hyperbolic conservation laws

被引:9
作者
Arvanitis, Christos [1 ,2 ]
机构
[1] Univ Cyprus, Dept Math & Stat, Nicosia 1678, Cyprus
[2] FORTH, Inst Appl & Computat Math, Iraklion 71110, Crete, Greece
关键词
finite element methods; relaxation model; adaptive mesh redistribution; hyperbolic conservation laws;
D O I
10.1007/s10915-007-9155-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider a new class of Relaxation Finite Element schemes for hyperbolic conservation laws, with more stable behavior on the limit area of the relaxation parameter. Combining this scheme with an efficient adapted spatial redistribution process considered also in this work, we form a robust scheme of controllable resolution. The results on a number of test problems show that this scheme can produce entropic-approximations of high resolution, even on the limit of the relaxation parameter where the scheme lacks of the relaxation mechanism. Thus we experimentally conclude that the proposed spatial redistribution process, has by its own interesting stabilization properties for computational solutions of conservation law problems.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 32 条
[1]  
[Anonymous], 1998, Lecture Notes in Mathematics
[2]   Stability and convergence of a class of finite element schemes for hyperbolic systems of conservation laws [J].
Arvanitis, C ;
Makridakis, C ;
Tzavaras, AE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (04) :1357-1393
[3]   Adaptive finite element relaxation schemes for hyperbolic conservation laws [J].
Arvanitis, C ;
Katsaounis, T ;
Makridakis, C .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (01) :17-33
[4]  
Azarenok B. N., 2003, COMMUN MATH SCI, V1, P152, DOI DOI 10.4310/CMS.2003.v1.n1.a10
[5]   BASIC PRINCIPLES OF FEEDBACK AND ADAPTIVE APPROACHES IN THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
GUI, W .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1986, 55 (1-2) :27-42
[6]  
BABUSKA I, 1997, TICAM FORUM NOTES
[7]   Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem [J].
Beckett, G ;
Mackenzie, JA .
APPLIED NUMERICAL MATHEMATICS, 2000, 35 (02) :87-109
[8]  
BILLINGSLEY P, 1992, PROBABILITY MEASURE
[9]  
Brenner S.C., 2002, MATH THEORY FINITE E
[10]   THE RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .4. THE MULTIDIMENSIONAL CASE [J].
COCKBURN, B ;
HOU, SC ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1990, 54 (190) :545-581