Rectifiability of harmonic measure

被引:53
作者
Azzam, Jonas [1 ]
Hofmann, Steve [2 ]
Martell, Jose Maria [3 ]
Mayboroda, Svitlana [4 ]
Mourgoglou, Mihalis [5 ,6 ]
Tolsa, Xavier [7 ,8 ]
Volberg, Alexander [9 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Edifici C Fac Ciencies, Bellaterra 08193, Barcelona, Spain
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] UCM, Inst Ciencias Matemat, CSIC, UAM,UC3M, C Nicolas Cabrera 13-15, Madrid 28049, Spain
[4] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
[5] Univ Autonoma Barcelona, Dept Matemat, Edifici C Fac Ciencies, Catalonia 08193, Barcelona, Spain
[6] Ctr Recerca Matemat, Edifici C Fac Ciencies, Catalonia 08193, Barcelona, Spain
[7] Univ Autonoma Barcelona, ICREA, Edifici C Fac Ciencies, Catalonia 08193, Barcelona, Spain
[8] BGSMath, Dept Matemat, Edifici C Fac Ciencies, Catalonia 08193, Barcelona, Spain
[9] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
BOUNDARY HARNACK PRINCIPLE; UNIFORM RECTIFIABILITY; HAUSDORFF DIMENSION; RIESZ TRANSFORM; HYPERSURFACES; SETS;
D O I
10.1007/s00039-016-0371-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we prove that for any open connected set , , and any with , absolute continuity of the harmonic measure with respect to the Hausdorff measure on E implies that is rectifiable. This solves an open problem on harmonic measure which turns out to be an old conjecture even in the planar case n = 1.
引用
收藏
页码:703 / 728
页数:26
相关论文
共 47 条
[41]   ANALYSIS VS GEOMETRY ON A CLASS OF RECTIFIABLE HYPERSURFACES IN RN [J].
SEMMES, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (04) :1005-1035
[43]  
Tolsa X., 2014, MEMOIRS AM IN PRESS
[44]  
Tolsa X., 2014, PROGR MATH, V307
[45]  
Volberg A., 2003, CBMS REGIONAL C SERI, V100
[46]   ON SINGULARITY OF HARMONIC MEASURE IN SPACE [J].
WU, JM .
PACIFIC JOURNAL OF MATHEMATICS, 1986, 121 (02) :485-496
[47]   SOME REMARKS ON HARMONIC MEASURE IN SPACE [J].
ZIEMER, WP .
PACIFIC JOURNAL OF MATHEMATICS, 1974, 55 (02) :629-637