Rectifiability of harmonic measure

被引:53
作者
Azzam, Jonas [1 ]
Hofmann, Steve [2 ]
Martell, Jose Maria [3 ]
Mayboroda, Svitlana [4 ]
Mourgoglou, Mihalis [5 ,6 ]
Tolsa, Xavier [7 ,8 ]
Volberg, Alexander [9 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Edifici C Fac Ciencies, Bellaterra 08193, Barcelona, Spain
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] UCM, Inst Ciencias Matemat, CSIC, UAM,UC3M, C Nicolas Cabrera 13-15, Madrid 28049, Spain
[4] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
[5] Univ Autonoma Barcelona, Dept Matemat, Edifici C Fac Ciencies, Catalonia 08193, Barcelona, Spain
[6] Ctr Recerca Matemat, Edifici C Fac Ciencies, Catalonia 08193, Barcelona, Spain
[7] Univ Autonoma Barcelona, ICREA, Edifici C Fac Ciencies, Catalonia 08193, Barcelona, Spain
[8] BGSMath, Dept Matemat, Edifici C Fac Ciencies, Catalonia 08193, Barcelona, Spain
[9] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
BOUNDARY HARNACK PRINCIPLE; UNIFORM RECTIFIABILITY; HAUSDORFF DIMENSION; RIESZ TRANSFORM; HYPERSURFACES; SETS;
D O I
10.1007/s00039-016-0371-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we prove that for any open connected set , , and any with , absolute continuity of the harmonic measure with respect to the Hausdorff measure on E implies that is rectifiable. This solves an open problem on harmonic measure which turns out to be an old conjecture even in the planar case n = 1.
引用
收藏
页码:703 / 728
页数:26
相关论文
共 47 条
[1]   Boundary Harnack principle and Martin boundary for a uniform domain [J].
Aikawa, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2001, 53 (01) :119-145
[2]  
Aikawa H, 2008, MATH SCAND, V103, P61
[3]  
Akman M., 2015, ARXIV150702039
[4]  
[Anonymous], 1995, Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ
[5]  
ARMITAGE DH, 2001, SPRINGER MG MATH, P1, DOI 10.1007/978-1-4471-0233-5
[6]  
Azzam J., 2014, J EUROPEAN IN PRESS
[7]  
Azzam J., ARXIV150506088
[8]  
Azzam J., 2014, POTENTIAL A IN PRESS
[9]  
Azzam J., 2015, INT MATH RE IN PRESS
[10]   Null sets of harmonic measure on NTA domains: Lipschitz approximation revisited [J].
Badger, Matthew .
MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (1-2) :241-262