Dark-singular combo optical solitons with fractional complex Ginzburg-Landau equation

被引:49
作者
Abdou, M. A. [1 ,2 ]
Soliman, A. A. [3 ,4 ]
Biswas, Anjan [5 ,6 ]
Ekici, Mehmet [7 ]
Zhou, Qin [8 ]
Moshokoa, Seithuti P. [6 ]
机构
[1] Univ Bisha, Phys Dept, Coll Sci, POB 344, Bisha 61922, Saudi Arabia
[2] Mansoura Univ, Phys Dept, Theoret Res Grp, Fac Sci, Mansoura 35516, Egypt
[3] Univ Bisha, Coll Sci, Dept Math, POB 344, Bisha 61922, Saudi Arabia
[4] Arish Univ, Fac Sci, Dept Math, Al Arish 45111, Egypt
[5] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[6] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[7] Bozok Univ, Fac Sci & Arts, Dept Math, TR-66100 Yozgat, Turkey
[8] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Hubei, Peoples R China
来源
OPTIK | 2018年 / 171卷
关键词
Dark-singular solitons; Jacobi's elliptic functions; ELLIPTIC FUNCTION EXPANSION; SOLITARY WAVE SOLUTIONS; DIFFERENTIAL-EQUATIONS; PERIODIC-SOLUTIONS;
D O I
10.1016/j.ijleo.2018.06.076
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper employs dextended Jacobi's elliptic function expansion method to retrieve doubly periodic function as solutions to the stochastic complex Ginzburg-Landau equation. In the limiting case, when the modulus of ellipticity approaches unity, these solutions approach optical solitons. This paper lists the dark-singular combo optical solitons.
引用
收藏
页码:463 / 467
页数:5
相关论文
共 32 条
[21]   Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results [J].
Jumarie, G. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (9-10) :1367-1376
[22]   Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions [J].
Jumarie, Guy .
APPLIED MATHEMATICS LETTERS, 2009, 22 (03) :378-385
[23]   The first integral method for some time fractional differential equations [J].
Lu, Bin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (02) :684-693
[24]   Backlund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations [J].
Lu, Bin .
PHYSICS LETTERS A, 2012, 376 (28-29) :2045-2048
[25]   SOLITARY WAVE SOLUTIONS OF NONLINEAR-WAVE EQUATIONS [J].
MALFLIET, W .
AMERICAN JOURNAL OF PHYSICS, 1992, 60 (07) :650-654
[26]   Optical soliton perturbation with quadratic-cubic nonlinearity by Riccati-Bernoulli sub-ODE method and Kudryashov's scheme [J].
Mirzazadeh, Mohammad ;
Alqahtani, Rubayyi T. ;
Biswas, Anjan .
OPTIK, 2017, 145 :74-78
[27]  
Oldman K. B., 1974, The fractional calculus
[28]  
Ortigueira MD, 2011, Fractional calculus for scientists and engineers, V84, DOI 10.1007/978-94-007-0747-4
[29]   New double-periodic solutions of fractional Drinfeld-Sokolov-Wilson equation in shallow water waves [J].
Sahoo, S. ;
Ray, S. Saha .
NONLINEAR DYNAMICS, 2017, 88 (03) :1869-1882
[30]  
Zhang S., 2010, Commun. Fract. Calc., V1, P48