机构:
Univ Paris 06, Lab Chim Matiere Condensee Paris, UMR UPMC CNRS 7574, Coll France, F-75231 Paris, FranceUniv Paris 06, Lab Chim Matiere Condensee Paris, UMR UPMC CNRS 7574, Coll France, F-75231 Paris, France
Faustini, Marco
[1
]
Vayer, Marylene
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Rech Matiere Divisee, F-45071 Orleans 02, FranceUniv Paris 06, Lab Chim Matiere Condensee Paris, UMR UPMC CNRS 7574, Coll France, F-75231 Paris, France
Vayer, Marylene
[2
]
Marmiroli, Benedetta
论文数: 0引用数: 0
h-index: 0
机构:
Austrian Acad Sci, Inst Biophys & Nanosyst Res, A-8042 Graz, AustriaUniv Paris 06, Lab Chim Matiere Condensee Paris, UMR UPMC CNRS 7574, Coll France, F-75231 Paris, France
Marmiroli, Benedetta
[3
]
Hillmyer, Marc
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USAUniv Paris 06, Lab Chim Matiere Condensee Paris, UMR UPMC CNRS 7574, Coll France, F-75231 Paris, France
Hillmyer, Marc
[4
]
Amenitsch, Heinz
论文数: 0引用数: 0
h-index: 0
机构:
Austrian Acad Sci, Inst Biophys & Nanosyst Res, A-8042 Graz, AustriaUniv Paris 06, Lab Chim Matiere Condensee Paris, UMR UPMC CNRS 7574, Coll France, F-75231 Paris, France
Amenitsch, Heinz
[3
]
Sinturel, Christophe
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Rech Matiere Divisee, F-45071 Orleans 02, FranceUniv Paris 06, Lab Chim Matiere Condensee Paris, UMR UPMC CNRS 7574, Coll France, F-75231 Paris, France
Sinturel, Christophe
[2
]
Grosso, David
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, Lab Chim Matiere Condensee Paris, UMR UPMC CNRS 7574, Coll France, F-75231 Paris, FranceUniv Paris 06, Lab Chim Matiere Condensee Paris, UMR UPMC CNRS 7574, Coll France, F-75231 Paris, France
Grosso, David
[1
]
机构:
[1] Univ Paris 06, Lab Chim Matiere Condensee Paris, UMR UPMC CNRS 7574, Coll France, F-75231 Paris, France
[2] Ctr Rech Matiere Divisee, F-45071 Orleans 02, France
Nanofluidic transport in lab-on-chip devices requires nanochannels that are difficult to fabricate since they require challenging top-down technological approaches. We present a bottom-up, scalable, low-cost, and robust alternative to construct large areas of extremely homogeneous Pillared Planar Nanochannels (PPNs) for nanofluidic applications. Their unique structure is made of mesoporous titanosilicate pillars, of 20 nm in diameter, supporting a continuous sealing layer of the same material. This complex hierarchical structure is achievable when combining diverse bottom-up processing strategies that include self-assembly of block copolymer, nanostructured sol-gel coatings, and highly controlled liquid deposition processing, with powerful top-down techniques such as deep X-ray lithography. While these novel materials are of interest for many nanotechnological applications, we focus on their ability to guide fluids through natural capillary forces, for which the classical Washburn's model of diffusion is verified. These systems are the first promising example of fully mesoporous materials applied to nanofluidics, thus opening the "lab-on-chip" domain to mesofluidics.