Information-Theoretic Approach for Analyzing Bias and Variance in Lung Nodule Size Estimation With CT: A Phantom Study

被引:31
作者
Gavrielides, Marios A. [1 ]
Zeng, Rongping [1 ]
Kinnard, Lisa M. [1 ]
Myers, Kyle J. [1 ]
Petrick, Nicholas [1 ]
机构
[1] US FDA, DIAM, OSEL, CDRH, Silver Spring, MD 20993 USA
基金
美国国家卫生研究院;
关键词
Lung nodule; matched filter; phantom study; thoracic computed tomography (CT); volume estimation; SMALL PULMONARY NODULES; HELICAL CT; AUTOMATIC SEGMENTATION; VOLUMETRIC MEASUREMENT; CANCER; VARIABILITY; IMAGES; GROWTH;
D O I
10.1109/TMI.2010.2052466
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work is a part of our more general effort to probe the interrelated factors impacting the accuracy and precision of lung nodule measurement tasks. For such a task a low-bias size estimator is needed so that the true effect of factors such as acquisition and reconstruction parameters, nodule characteristics and others can be assessed. Towards this goal, we have developed a matched filter based on an adaptive model of the object acquisition and reconstruction process. Our model derives simulated reconstructed data of nodule objects (templates) which are then matched to computed tomography data produced from imaging the actual nodule in a phantom study using corresponding imaging parameters. This approach incorporates the properties of the imaging system and their effect on the discrete 3-D representation of the object of interest. Using a sum of absolute differences cost function, the derived matched filter demonstrated low bias and variance in the volume estimation of spherical synthetic nodules ranging in density from -630 to +100 HU and in size from 5 to 10 mm. This work could potentially lead to better understanding of sources of error in the task of lung nodule size measurements and may lead to new techniques to account for those errors.
引用
收藏
页码:1795 / 1807
页数:13
相关论文
共 42 条
[1]  
AMBROSINI RD, 2009, P SPIE
[2]  
[Anonymous], 1983, Medical Imaging Systems
[3]   Lung nodule volumetry: segmentation algorithms within the same software package cannot be used interchangeably [J].
Ashraf, H. ;
de Hoop, B. ;
Shaker, S. B. ;
Dirksen, A. ;
Bach, K. S. ;
Hansen, H. ;
Prokop, M. ;
Pedersen, J. H. .
EUROPEAN RADIOLOGY, 2010, 20 (08) :1878-1885
[4]   Patient-specific models for lung nodule detection and surveillance in CT images [J].
Brown, MS ;
McNitt-Gray, MF ;
Goldin, JG ;
Suh, RD ;
Sayre, JW ;
Aberle, DR .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (12) :1242-1250
[5]   ELLIPTIC FIT OF OBJECTS IN 2 AND 3 DIMENSIONS BY MOMENT OF INERTIA OPTIMIZATION [J].
CHAUDHURI, BB ;
SAMANTA, GP .
PATTERN RECOGNITION LETTERS, 1991, 12 (01) :1-7
[6]   Accuracy of automated volumetry of pulmonary nodules across different multislice CT scanners [J].
Das, Marco ;
Ley-Zaporozhan, Julia ;
Gietema, H. A. ;
Czech, Andre ;
Muehlenbruch, Georg ;
Mahnken, Andreas H. ;
Katoh, Markus ;
Bakai, Annemarie ;
Salganicoff, Marcos ;
Diederich, Stefan ;
Prokop, Mathias ;
Kauczor, Hans-Ulrich ;
Guenther, Rolf W. ;
Wildberger, Joachim E. .
EUROPEAN RADIOLOGY, 2007, 17 (08) :1979-1984
[7]   A comparison of six software packages for evaluation of solid lung nodules using semi-automated volumetry: What is the minimum increase in size to detect growth in repeated CT examinations [J].
de Hoop, Bartjan ;
Gietema, Hester ;
van Ginneken, Bram ;
Zanen, Pieter ;
Groenewegen, Gerard ;
Prokop, Mathias .
EUROPEAN RADIOLOGY, 2009, 19 (04) :800-808
[8]   A resource for the assessment of lung nodule size estimation methods: database of thoracic CT scans of an anthropomorphic phantom [J].
Gavrielides, Marios A. ;
Kinnard, Lisa M. ;
Myers, Kyle J. ;
Peregoy, Jennifer ;
Pritchard, William F. ;
Zeng, Rongping ;
Esparza, Juan ;
Karanian, John ;
Petrick, Nicholas .
OPTICS EXPRESS, 2010, 18 (14) :15244-15255
[9]   Noncalcified Lung Nodules: Volumetric Assessment with Thoracic CT [J].
Gavrielides, Marios A. ;
Kinnard, Lisa M. ;
Myers, Kyle J. ;
Petrick, Nicholas .
RADIOLOGY, 2009, 251 (01) :26-37
[10]   Pulmonary nodules: Interscan variability of semiautomated volume measurements with multisection CT-influence of inspiration level, nodule size, and segmentation performance [J].
Gietema, Hester A. ;
Schaefer-Prokop, Cornelia M. ;
Mali, Willem P. T. M. ;
Groenewegen, Gerard ;
Prokop, Mathias .
RADIOLOGY, 2007, 245 (03) :888-894