There exist steiner triple systems of order 15 that do not occur in a perfect binary one-error-correcting code

被引:6
作者
Ostergard, Patric R. J. [1 ]
Pottonen, Olli [1 ]
机构
[1] Helsinki Univ Technol, Dept Elect & Commun Engn, FIN-02150 Espoo, Finland
关键词
Hamming code; perfect code; Steiner quadruple system; Steiner triple system;
D O I
10.1002/jcd.20122
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The codewords at distance three from a particular codeword of a perfect binary one-error-correcting code (of length 2(m) - 1) form a Steiner triple system. It is a longstanding open problem whether every Steiner triple system of order 2(m) - 1 occurs in a perfect code. It turns out that this is not the case; relying on a classification of the Steiner quadruple systems of order 16 it is shown that the unique anti-Pasch Steiner triple system of order 15 provides a counterexample. (c) 2006 Wiley Periodicals, Inc. J Combin Designs.
引用
收藏
页码:465 / 468
页数:4
相关论文
共 13 条
  • [1] ALL 80 STEINER TRIPLE-SYSTEMS ON 15 ELEMENTS ARE DERIVED
    DIENER, I
    SCHMITT, E
    DEVRIES, HL
    [J]. DISCRETE MATHEMATICS, 1985, 55 (01) : 13 - 19
  • [2] On perfect codes and tilings: Problems and solutions
    Etzion, T
    Vardy, A
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1998, 11 (02) : 205 - 223
  • [3] GRANNELL MJ, 1985, ANN DISCRETE MATH, V26, P183
  • [4] HERGERT F, 1985, THESIS TECHNISCHE HO
  • [5] KASKI P, IN PRESS J COMBIN A
  • [6] Key J. D., 1996, CODE GEOM, V9, P7, DOI [10.1007/BF00169770, DOI 10.1007/BF00169770]
  • [7] Mac Williams F., 1977, THEORY ERROR CORRECT
  • [8] Mathon R.A., 1983, ARS COMBINATORIA, V15, P3
  • [9] MATHON RA, 1983, ARS COMBINATORIA, V16, P286
  • [10] Näslund M, 1999, ARS COMBINATORIA, V53, P129