Superhydrophobic coating from fluoroalkylsilane modified natural rubber encapsulated SiO2 composites for self-driven oil/water separation

被引:57
|
作者
Saengkaew, Jittraporn [1 ]
Le, Duy [1 ]
Samart, Chanatip [1 ]
Sawada, Hideo [2 ]
Nishida, Masakazu [3 ]
Chanlek, Narong [4 ]
Kongparakul, Suwadee [1 ]
Kiatkamjornwong, Suda [5 ,6 ]
机构
[1] Thammasat Univ, Dept Chem, Fac Sci & Technol, Pathum Thani 12120, Thailand
[2] Hirosaki Univ, Dept Frontier Mat Chem, Grad Sch Sci & Technol, Hirosaki, Aomori 0368561, Japan
[3] Natl Inst Adv Ind Sci & Technol, Moriyama Ku, 2266-98 Shimoshidami, Nagoya, Aichi 4638560, Japan
[4] Synchrotron Light Res Inst, Publ Org, 111 Univ Ave, Nakhon Ratchasima 3000, Thailand
[5] Chulalongkorn Univ, Fac Sci, Bangkok 10330, Thailand
[6] Acad Sci, FRST, Off Royal Soc, Bangkok 10300, Thailand
关键词
Natural rubber; Encapsulation; Fluoroalkylsilane; Oil/water separation superhydrophobic/superoleophilic mesh; OIL-WATER SEPARATION; SURFACE MODIFICATION; FACILE FABRICATION; COPPER MESH; COATED MESH; STEEL MESH; ROBUST; MEMBRANES; MICROFILTRATION; NANOPARTICLES;
D O I
10.1016/j.apsusc.2018.08.059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A superhydrophobic/superoleophilic mesh was successfully prepared in a simple and environmentally friendly process by coating with fluoroalkylsilane-modified natural rubber-encapsulated silica latex (FAS-modified NR/SiO2). TEM images confirmed the formation of a core-shell morphology, in which the rubber core was fully covered by a silica shell. This improved the thermal stability of the composites. Coating with FAS-modified NR/SiO2 enhanced both the hydrophobicity and surface roughness of the mesh. The depth profile of the XPS spectra revealed the presence of fluoroalkylsilane on the superhydrophobic mesh and Ar gas ion etching confirmed migration of the fluoroalkylsilane, SiO2, and carbon to the mesh surface. SEM and AFM results quantified the surface roughness of the coated mesh. Meshes coated with FAS-modified NR/SiO2 exhibited superhydrophobic/superoleophilic properties. Surfaces coated with these encapsulated particles were successfully applied to oil/water separation. They exhibited a separation efficiency of up to 100% and were reusable across 30 cycles.
引用
收藏
页码:164 / 174
页数:11
相关论文
共 50 条
  • [21] Oil-Water Separation Using Superhydrophobic PET Membranes Fabricated Via Simple Dip-Coating Of PDMS-SiO2 Nanoparticles
    Han, Sang Wook
    Kim, Kwang-Dae
    Seo, Hyun Ook
    Kim, Il Hee
    Jeon, Chan Seok
    An, Jung Eun
    Kim, Ju Hwan
    Uhm, Sunghyun
    Kim, Young Dok
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2017, 302 (11)
  • [22] Fluorinated waterborne polyurethane/SiO2 nanoparticle dispersions for superhydrophobic foam fabrication: Physicochemical properties and oil/ water separation studies
    Doctorsafaei, Amir Hossein
    Mohammadi, Abbas
    PROGRESS IN ORGANIC COATINGS, 2025, 199
  • [23] Fluorine-Free Superhydrophobic Petal-like SiO2 Nanostructure Supported on Cotton for Oil-Water Separation
    Chen, Zixiu
    Yang, Baojie
    Feng, Lingling
    Xu, Xiaoyan
    Luo, Haiyang
    Li, Wei
    Wang, Keliang
    Qiao, Hui
    ACS APPLIED NANO MATERIALS, 2024, : 15116 - 15127
  • [24] Recycled waste masks as oil absorbent based on stable SiO2 coating for efficient separation of oil-water mixtures and oil-in-water emulsions
    Ning, Lianchao
    Liu, Yi
    Man, Shuang
    Han, Yaxin
    Zhang, Longfei
    Ling, Honglei
    Zhang, Ming
    JOURNAL OF WATER PROCESS ENGINEERING, 2023, 56
  • [25] Robust, fluorine-free and superhydrophobic composite melamine sponge modified with dual silanized SiO2 microspheres for oil-water separation
    Zhang, Ruilong
    Zhou, Zhiping
    Ge, Wenna
    Lu, Yi
    Liu, Tianshu
    Yang, Wenming
    Dai, Jiangdong
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2021, 33 : 50 - 60
  • [26] Superhydrophobic-Superoleophilic SiO2/Polystyrene Porous Micro/nanofibers for Efficient Oil-Water Separation
    Yadan Ding
    Dan Xu
    Hong Shao
    Tie Cong
    Xia Hong
    Huiying Zhao
    Fibers and Polymers, 2019, 20 : 2017 - 2024
  • [27] Robust and Durable Superhydrophobic Polythiophene/SiO2 Coated Cotton Fabric for Versatile Oil-Water Separation
    Bai, Weibin
    Lin, Haimen
    Chen, Kunhui
    Zeng, Renping
    Lin, Yucai
    Xu, Yanlian
    ADVANCED MATERIALS INTERFACES, 2021, 8 (16)
  • [28] Superhydrophobic-Superoleophilic SiO2/Polystyrene Porous Micro/nanofibers for Efficient Oil-Water Separation
    Ding, Yadan
    Xu, Dan
    Shao, Hong
    Cong, Tie
    Hong, Xia
    Zhao, Huiying
    FIBERS AND POLYMERS, 2019, 20 (10) : 2017 - 2024
  • [29] Enhanced oil/water separation using superhydrophobic nano SiO2-modified porous melamine sponges
    Chen, Yongsheng
    Xue, Yi
    Ma, Sijia
    Shi, Haochuan
    Wang, Yanru
    Ren, Hongqiang
    Xu, Ke
    Chemosphere, 2024, 369
  • [30] Fabrication of epoxy/SiO2/ZnO superhydrophobic nanocomposite mesh membranes for oil-water separation: Correlating oil flux to fabrication parameters via Box-Behnken design
    Velayi, Elmira
    Norouzbeigi, Reza
    APPLIED SURFACE SCIENCE, 2023, 611