Promises and challenges of human computational ethology

被引:37
作者
Mobbs, Dean [1 ,2 ]
Wise, Toby [1 ,3 ,4 ]
Suthana, Nanthia [5 ,6 ,7 ,8 ]
Guzman, Noah [2 ]
Kriegeskorte, Nikolaus [9 ,10 ]
Leibo, Joel Z. [11 ]
机构
[1] Dept Humanities & Social Sci, 1200 E Calif Blvd,HSS 228-77, Pasadena, CA 91125 USA
[2] CALTECH, Computat & Neural Syst Program, 1200 E Calif Blvd,HSS 228-77, Pasadena, CA 91125 USA
[3] UCL, Wellcome Ctr Human Neuroimaging, London, England
[4] UCL, Max Planck UCL Ctr Computat Psychiat & Ageing Res, London, England
[5] Univ Calif Los Angeles, Jane & Terry Semel Inst Neurosci & Human Behav, Dept Psychiat & Biobehav Sci, Los Angeles, CA USA
[6] Univ Calif Los Angeles, Dept Neurosurg, Los Angeles, CA USA
[7] Univ Calif Los Angeles, Dept Psychol, Los Angeles, CA USA
[8] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA USA
[9] Columbia Univ, Dept Psychol, New York, NY 10027 USA
[10] Columbia Univ, Zuckerman Mind Brain Behav Inst, Dept Neurosci, New York, NY USA
[11] DeepMind, London, England
基金
英国惠康基金; 美国国家卫生研究院;
关键词
VIRTUAL-REALITY; EXPOSURE THERAPY; BRAIN ACTIVITY; FEAR; BEHAVIOR; ANXIETY; THREAT; PREDICTION; SEQUENCES; SYSTEM;
D O I
10.1016/j.neuron.2021.05.021
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The movements an organism makes provide insights into its internal states and motives. This principle is the foundation of the new field of computational ethology, which links rich automatic measurements of natural behaviors to motivational states and neural activity. Computational ethology has proven transformative for animal behavioral neuroscience. This success raises the question of whether rich automatic measurements of behavior can similarly drive progress in human neuroscience and psychology. New technologies for capturing and analyzing complex behaviors in real and virtual environments enable us to probe the human brain during naturalistic dynamic interactions with the environment that so far were beyond experimental investigation. Inspired by nonhuman computational ethology, we explore how these new tools can be used to test important questions in human neuroscience. We argue that application of this methodology will help human neuroscience and psychology extend limited behavioral measurements such as reaction time and accuracy, permit novel insights into how the human brain produces behavior, and ultimately reduce the growing measurement gap between human and animal neuroscience.
引用
收藏
页码:2224 / 2238
页数:15
相关论文
共 50 条
[21]   Pain and emotions in non-human animals: Debates and insights from philosophy, ethology, and neuroscience [J].
Vanutelli, Maria Elide ;
Balconi, Michela .
RICERCHE DI PSICOLOGIA, 2019, 42 (02) :385-416
[22]   Cross-Layer Early Reliability Evaluation: Challenges and Promises [J].
Di Carlo, S. ;
Vallero, A. ;
Gizopoulos, D. ;
Di Natale, G. ;
Gonzalez, A. ;
Canal, R. ;
Mariani, R. ;
Pipponzi, M. ;
Grasset, Arnaud ;
Bonnot, Philippe ;
Reichenbach, Frank ;
Rafiq, G. ;
Loekstad, T. .
PROCEEDINGS OF THE 2014 IEEE 20TH INTERNATIONAL ON-LINE TESTING SYMPOSIUM (IOLTS), 2014, :228-233
[23]   Challenges in computational organic chemistry [J].
Bachrach, Steven M. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2014, 4 (05) :482-487
[24]   Steps towards a computational ethology: an automatized, interactive setup to investigate filial imprinting and biological predispositions [J].
Zanon, Mirko ;
Lemaire, Bastien S. ;
Vallortigara, Giorgio .
BIOLOGICAL CYBERNETICS, 2021, 115 (06) :575-584
[25]   Operant avoidance learning in crayfish, Orconectes rusticus: Computational ethology and the development of an automated learning paradigm [J].
Bhimani, Rohan ;
Huber, Robert .
LEARNING & BEHAVIOR, 2016, 44 (03) :239-249
[26]   Human and space ethology as a methodology-based solution for interdisciplinary research [J].
Tafforin, Carole ;
Tognini, Michel .
FRONTIERS IN PHYSIOLOGY, 2025, 16
[27]   FeMnNiAl Iron-Based Shape Memory Alloy: Promises and Challenges [J].
Abuzaid, W. ;
Wu, Y. ;
Sidharth, R. ;
Brenne, F. ;
Alkan, S. ;
Vollmer, M. ;
Krooss, P. ;
Niendorf, T. ;
Sehitoglu, H. .
SHAPE MEMORY AND SUPERELASTICITY, 2019, 5 (03) :263-277
[28]   Review. Promises, pitfalls and challenges of genomic selection in breeding programs [J].
Ibanez-Escriche, N. ;
Gonzalez-Recio, O. .
SPANISH JOURNAL OF AGRICULTURAL RESEARCH, 2011, 9 (02) :404-413
[29]   Ethological computational psychiatry: Challenges and opportunities [J].
Monosov, Ilya E. ;
Zimmermann, Jan ;
Frank, Michael J. ;
Mathis, Mackenzie W. ;
Baker, Justin T. .
CURRENT OPINION IN NEUROBIOLOGY, 2024, 86
[30]   ADVANCES AND CHALLENGES IN THE COMPUTATIONAL SIMULATION OF COMPOSITES [J].
LLorca, J. .
COMPOSITE MATERIALS FOR STRUCTURAL PERFORMANCE: TOWARDS HIGHER LIMITS, 2011, :45-57