Geometric mean and geodesic regression on Grassmannians

被引:28
作者
Batzies, E. [1 ]
Hueper, K. [2 ]
Machado, L. [3 ,4 ]
Leite, F. Silva [4 ,5 ]
机构
[1] Hsch Furtwangen Univ, Fac Elect & Comp Engn, D-78120 Furtwangen, Germany
[2] Univ Wurzburg, Dept Math, D-97074 Wurzburg, Germany
[3] Univ Tras Os Montes & Alto Douro UTAD, Dept Math, P-5001801 Vila Real, Portugal
[4] Univ Coimbra Polo II, Inst Syst & Robot, P-3030290 Coimbra, Portugal
[5] Univ Coimbra, Dept Math, P-3001454 Coimbra, Portugal
关键词
Grassmann manifold; Geodesic distance; Geometric mean; CENTER-OF-MASS; MANIFOLDS; SPLINES;
D O I
10.1016/j.laa.2014.10.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of this paper is to solve the problem of finding a geodesic that best fits a given set of time-labelled points on the Grassmann manifold. To achieve this goal, we first derive a very useful simplified formula for the geodesic arc joining two points on the Grassmannian depending explicitly only on the given points. This allows to simplify the expression for the geodesic distance, which is crucial to generalize the fitting problem, and is also used to obtain a simpler characterization of the geometric mean of a finite set of points lying on the Grassmannian, where the given points enter explicitly. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:83 / 101
页数:19
相关论文
共 35 条
[1]   Riemannian geometry of Grassmann manifolds with a view on algorithmic computation [J].
Absil, PA ;
Mahony, R ;
Sepulchre, R .
ACTA APPLICANDAE MATHEMATICAE, 2004, 80 (02) :199-220
[2]  
Absil PA, 2008, OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS, P1
[3]   RIEMANNIAN Lp CENTER OF MASS: EXISTENCE, UNIQUENESS, AND CONVEXITY [J].
Afsari, Bijan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (02) :655-673
[4]  
[Anonymous], 2004, HDB MATH
[5]  
[Anonymous], 1996, Journal of Experimental Mathematics, DOI [10.1080/10586458.1996.10504585, DOI 10.1080/10586458.1996.10504585]
[6]  
[Anonymous], 2006, Proceedings of the Conference on Computer Vision and Pattern Recognition, DOI 10.1109/CVPR.2006.94
[7]   Geometric means in a novel vector space structure on symmetric positive-definite matrices [J].
Arsigny, Vincent ;
Fillard, Pierre ;
Pennec, Xavier ;
Ayache, Nicholas .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (01) :328-347
[8]   Rank-preserving geometric means of positive semi-definite matrices [J].
Bonnabel, Silvere ;
Collard, Anne ;
Sepulchre, Rodolphe .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (08) :3202-3216
[9]   Spherical averages and applications to spherical splines and interpolation [J].
Buss, SR ;
Fillmore, JP .
ACM TRANSACTIONS ON GRAPHICS, 2001, 20 (02) :95-126
[10]   Constructing packings in Grassmannian manifolds via alternating projection [J].
Dhillon, I. S. ;
Heath, R. W., Jr. ;
Strohmer, T. ;
Tropp, J. A. .
EXPERIMENTAL MATHEMATICS, 2008, 17 (01) :9-35