Stability of Jin-Xin relaxation shocks

被引:7
作者
Humpherys, J [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
D O I
10.1090/qam/1976368
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine the spectrum of shock profiles for the Jin-Xin relaxation scheme for systems of hyperbolic conservation laws in one spatial dimension. By using a weighted norm estimate, we prove that these shock profiles exhibit strong spectral stability in the weak shock limit.
引用
收藏
页码:251 / 263
页数:13
相关论文
共 11 条
[1]  
Brin LQ, 2001, MATH COMPUT, V70, P1071, DOI 10.1090/S0025-5718-00-01237-0
[2]   Linear stability of shock profiles for systems of conservation laws with semi-linear relaxation [J].
Godillon, P .
PHYSICA D-NONLINEAR PHENOMENA, 2001, 148 (3-4) :289-316
[4]   Spectral stability of small-amplitude shock profiles for dissipative symmetric hyperbolic-parabolic systems [J].
Humphreys, J ;
Zumbrun, K .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2002, 53 (01) :20-34
[5]   THE RELAXATION SCHEMES FOR SYSTEMS OF CONSERVATION-LAWS IN ARBITRARY SPACE DIMENSIONS [J].
JIN, S ;
XIN, ZP .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (03) :235-276
[6]  
LIU H, ASYMPTOTIC STABILITY
[7]   STABLE VISCOSITY MATRICES FOR SYSTEMS OF CONSERVATION-LAWS [J].
MAJDA, A ;
PEGO, RL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 56 (02) :229-262
[8]  
MASCIA C, UNPUB POINTWISE GREE
[9]   Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation [J].
Zeng, YN .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 150 (03) :225-279
[10]   Pointwise semigroup methods and stability of viscous shock waves [J].
Zumbrun, K ;
Howard, P .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1998, 47 (03) :741-871