Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains

被引:55
作者
Marin-Rubio, Pedro [1 ]
Real, Jose [1 ]
机构
[1] Univ Seville, Dpto Ecuaciones Differenciales & Anal Numerico, E-41080 Seville, Spain
关键词
Navier-Stokes equations; delays terms; unbounded domains; asymptotic compactness; attractors;
D O I
10.1016/j.na.2006.09.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of tempered and nontempered pullback attractors for two dimensional Navier-Stokes equations on unbounded domains satisfying Poincar6 inequality, for the case in which a forcing term involving memory effects appears. Our proof uses an energy method and is valid for the autonomous and nonautonomous cases. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2784 / 2799
页数:16
相关论文
共 17 条
  • [1] Pullback attractors for asymptotically compact non-autonomous dynamical systems
    Caraballo, T
    Lukaszewicz, G
    Real, J
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (03) : 484 - 498
  • [2] Attractors for 2D-Navier-Stokes models with delays
    Caraballo, T
    Real, J
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 205 (02) : 271 - 297
  • [3] Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays
    Caraballo, T
    Real, J
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2040): : 3181 - 3194
  • [4] Navier-Stokes equations with delays
    Caraballo, T
    Real, J
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2014): : 2441 - 2453
  • [5] Chepyzhov V. V., 2002, AM MATH SOC C PUBL, V49
  • [6] Constantin P., 1988, Chicago Lectures in Mathematics, DOI DOI 10.7208/CHICAGO/9780226764320.001.0001
  • [7] Random attractors
    Crauel H.
    Debussche A.
    Flandoli F.
    [J]. Journal of Dynamics and Differential Equations, 1997, 9 (2) : 307 - 341
  • [8] Navier-Stokes equations with delays on unbounded domains
    Garrido-Atienza, MJ
    Marín-Rubio, P
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (05) : 1100 - 1118
  • [9] Hale J. K., 1988, ASYMPTOTIC BEHAV DIS
  • [10] LADYZHENSKAYA O, 1992, CR ACAD SCI I-MATH, V314, P253