Complementary equitably totally disconnected equitable domination in graphs

被引:3
作者
Nataraj, P. [1 ]
Sundareswaran, R. [2 ]
Swaminathan, V [3 ]
机构
[1] Madura Coll, Dept Math, Madurai, Tamil Nadu, India
[2] Sri Sivasubramaniya Nadar Coll Engn, Dept Math, Chennai, Tamil Nadu, India
[3] Saraswathi Narayanan Coll, Ramanujan Res Ctr Math, Madurai, Tamil Nadu, India
关键词
Domination; equitable domination; independence; complementary equitably totally disconnected equitable domination; NUMBER;
D O I
10.1142/S1793830921500439
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a simple, finite and undirected graph G with vertex set V and edge set E, a subset S of V (G) is said to be a degree equitable dominating set if for every v is an element of V - S there exists a vertex u is an element of S such that uv is an element of E(G) and vertical bar deg(u) - deg(v)vertical bar <= 1, where deg(u) denotes the degree of u in G. The minimum cardinality of such a dominating set is denoted by gamma(e) and is called the equitable domination number of G. In this paper, we introduce Complementary Equitably Totally Disconnected Equitable domination in graphs and obtain some interesting results. Also, we discuss some bounds of this new domination parameter.
引用
收藏
页数:12
相关论文
共 19 条
[1]  
Acharya B. D., 1980, J MATH PHYS SCI, V14, P471
[2]  
Anitha A., 2010, Journal of combinatorial Mathematics and combinatorial computing, V75, P187
[3]  
Anitha A, 2009, Int J Math Combin, V3, P32
[4]  
Arumugam S, 2010, AUSTRALAS J COMB, V46, P37
[5]  
Arumugam S, 2002, INDIAN J PURE AP MAT, V33, P1671
[6]  
Dharmalingam K. M., 2013, B INT MATH VIRTUAL I, V3, P21
[7]  
Dharmalingam K. M., 2006, THESIS MADURAI KAMAR
[8]  
Dharmalingam Kuppusamy Markandan, 2012, B INT MATH VIRTUAL I, V2, P109
[9]  
Haynes T.W., 2013, Fundamentals of Domination in Graphs
[10]  
Kulli V.R, 2006, ACTACIENCIAINDICA, VXXXII, P715