Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth

被引:43
|
作者
Ma, Xiaochi [1 ]
Sanguinet, Karen A. [1 ]
Jacoby, Pete W. [1 ]
机构
[1] Washington State Univ, Dept Crop & Soil Sci, Pullman, WA 99164 USA
基金
美国食品与农业研究所;
关键词
Micro-irrigation; Deficit irrigation; Grape physiology; Fruit quality; Perennial crops; Minirhizotron; DEFICIT IRRIGATION; CLIMATE-CHANGE; DISTRIBUTION PATTERNS; SUBSURFACE; TREES; L; INCREASES; QUALITY; SYSTEM; CORN;
D O I
10.1016/j.agwat.2019.105993
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Direct root-zone irrigation is a novel subsurface drip irrigation strategy for water conservation. However, a comparison with traditional irrigation methods is lacking to better define the potential advantages of direct rootzone irrigation. A two-year study was conducted to evaluate the performance of Vitis vinifera L. cv. Cabernet Sauvignon under direct root-zone irrigation and surface drip irrigation in a commercial vineyard with loamy sand soil in a semi-arid region of southcentral Washington State, USA. Plant water status, root traits, grape yield, berry morphology and composition, and crop water use efficiency were compared between irrigation methods under three irrigation rates. Compared to surface drip irrigation, direct root-zone irrigation improved grape yield by 9-12% and crop water use efficiency by 9-11% under varied climate conditions with minor effects on berry composition, which could be potentially adjusted by irrigation rate. Moreover, grapevines irrigated through direct root-zone irrigation had 48-67% and 50-54% decrease in root number, respectively, at high and moderate irrigation rates in the upper soil profile (0-60 cm) with a decrease in water stress as revealed by higher midday stem water potential. Irrigation rate was the major factor influencing berry morphology. In fact, reduced irrigation resulted in a decrease in weight, size and number of berries. We conclude that direct root-zone irrigation could be a successful tool for improving yield and crop water use efficiency, potentially encouraging deep rooting to alleviate the water stress in grapevine under seasonal drought, and offering the ability to modify berry morphology and composition by adjusting the amount of water use.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Water use efficiency and fruit quality of table grape under alternate partial root-zone drip irrigation
    Du, Taisheng
    Kang, Shaozhong
    Zhang, Jianhua
    Li, Fusheng
    Yan, Boyuan
    AGRICULTURAL WATER MANAGEMENT, 2008, 95 (06) : 659 - 668
  • [2] Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution
    Slamini, Maryam
    Sbaa, Mohamed
    Arabi, Mourad
    Darmous, Ahmed
    AGRICULTURAL WATER MANAGEMENT, 2022, 271
  • [3] Effects of Partial Root-Zone Irrigation on the Water Use Efficiency and Root Water and Nitrate Uptake of Corn
    Barideh, Rahman
    Besharat, Sina
    Morteza, Mohamad
    Rezaverdinejad, Vahid
    WATER, 2018, 10 (04)
  • [4] Effects of water and NPK fertigation on watermelon yield, quality, irrigation-water, and nutrient use efficiency under alternate partial root-zone drip irrigation
    Wang, Xing-Chen
    Liu, Rui
    Luo, Jia-nan
    Zhu, Peng-fei
    Wang, Yao-sheng
    Pan, Xiao-Cui
    Shu, Liang-Zuo
    AGRICULTURAL WATER MANAGEMENT, 2022, 271
  • [5] Preliminary Investigation on Crop Growth, Physiology, and Yield of Rice under Partial Root-Zone Irrigation
    Parthasarathi, Theivasigamani
    Nirmal Kumar, A. R.
    Vanitha, Koothan
    INTERNATIONAL JOURNAL OF AGRONOMY, 2020, 2020
  • [6] Water-use efficiency and physiological responses of maize under partial root-zone irrigation
    Li, Fusheng
    Wei, Caihui
    Zhang, Fucang
    Zhang, Jianhua
    Nong, Mengling
    Kang, Shaozhong
    AGRICULTURAL WATER MANAGEMENT, 2010, 97 (08) : 1156 - 1164
  • [7] Effects of different surface and subsurface drip irrigation levels on growth traits, tuber yield, and irrigation water use efficiency of potato crop
    Mattar, Mohamed A.
    Zin El-Abedin, Tarek K.
    Al-Ghobari, Hussein M.
    Alazba, A. A.
    Elansary, Hosam O.
    IRRIGATION SCIENCE, 2021, 39 (04) : 517 - 533
  • [8] Alternating Partial Root-Zone Subsurface Drip Irrigation Enhances the Productivity and Water Use Efficiency of Alfalfa by Improving Root Characteristics
    Sun, Qunce
    Zhang, Shuzhen
    Peng, Xianwei
    Ge, Xingyu
    Wen, Binghan
    Jiang, Zhipeng
    Wang, Yuxiang
    Zhang, Bo
    AGRONOMY-BASEL, 2024, 14 (04):
  • [9] Partial root-zone drying irrigation in orange orchards: Effects on water use and crop production characteristics
    Consoli, S.
    Stagno, F.
    Vanella, D.
    Boaga, J.
    Cassiani, G.
    Roccuzzo, G.
    EUROPEAN JOURNAL OF AGRONOMY, 2017, 82 : 190 - 202
  • [10] Effects of Nitrogen Application Rates and Irrigation Regimes on Root Growth and Nitrogen-Use Efficiency of Maize under Alternate Partial Root-Zone Irrigation
    Dongliang Qi
    Tiantian Hu
    Journal of Soil Science and Plant Nutrition, 2022, 22 : 2793 - 2804