Fabrication and evaluation of 3-D printed PEEK scaffolds containing Macropores by design

被引:38
作者
Elhattab, K. [1 ]
Sikder, P. [2 ]
Walker, J. M. [3 ]
Bottino, M. C. [4 ]
Bhaduri, S. B. [2 ,5 ]
机构
[1] Univ Toledo, Dept Bioengn, Toledo, OH 43606 USA
[2] Univ Toledo, Dept Mech Ind & Mfg Engn, Toledo, OH 43606 USA
[3] Youngstown State Univ, Dept Mfg Engn, Youngstown, OH 44555 USA
[4] Univ Michigan, Sch Dent, Dept Cariol Restorat Sci & Endodont, Ann Arbor, MI 48109 USA
[5] Natl Sci Fdn, EEC Div, Directorate Engn, Alexandria, VA 22314 USA
基金
美国国家科学基金会;
关键词
3D printing; PEEK; Macroporous; Orthopedics; Implants; Osseointegration; PORE-SIZE; SINGLE-PHASE; COATINGS; INGROWTH;
D O I
10.1016/j.matlet.2019.127227
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article reports on the fabrication and evaluation of 3-D printed polyetheretherketone (PEEK) scaffolds with controlled macroporosity. Specifically, uniform macropore sizes ranging from 800 to 1800 mu m by design were generated by varying processing parameters. It is expected that the 3-D printing ability to obtain customized macropores can help arriving at the optimum pore size in scaffolds to encourage bone regeneration. This study conclusively showed optimal cell adhesion and proliferation in scaffolds containing uniform pores of an average size of 800 mu m. A construct containing a wide distribution of pores cannot come to this conclusion. In this context, the precision and reproducibility of additive manufacturing in scaffold fabrication play an important role. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:4
相关论文
共 50 条
[31]   Bionic design and verification of 3D printed PEEK costal cartilage prosthesis [J].
Zhang, Chenguang ;
Wang, Ling ;
Kang, Jianfeng ;
Fuentes, Oscar Martel ;
Li, Dichen .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2020, 103
[32]   Design and Development of a Novel 3-D Printed External Fixation Device for Fracture Stabilization [J].
Skelley, Nathan Wm. .
3D PRINTING IN MEDICINE, 2023, 9 (01)
[33]   Design and Development of a Novel 3-D Printed External Fixation Device for Fracture Stabilization [J].
Nathan Wm. Skelley .
3D Printing in Medicine, 9
[34]   Personalized 3D printed scaffolds: The ethical aspects [J].
van Daal, Manon ;
de Kanter, Anne-Floor J. ;
Bredenoord, Annelien L. ;
de Graeff, Nienke .
NEW BIOTECHNOLOGY, 2023, 78 :116-122
[35]   Improved resolution of 3D printed scaffolds by shrinking [J].
Chia, Helena N. ;
Wu, Benjamin M. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2015, 103 (07) :1415-1423
[36]   Advances in growth factor-containing 3D printed scaffolds in orthopedics [J].
Zhan, Longwen ;
Zhou, Yigui ;
Liu, Ruitang ;
Sun, Ruilong ;
Li, Yunfei ;
Tian, Yongzheng ;
Fan, Bo .
BIOMEDICAL ENGINEERING ONLINE, 2025, 24 (01)
[37]   Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis [J].
Wang, Han ;
Su, Kexin ;
Su, Leizheng ;
Liang, Panpan ;
Ji, Ping ;
Wang, Chao .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 104
[38]   Strontium-Substituted Nanohydroxyapatite Containing Biodegradable 3D Printed Composite Scaffolds for Bone Regeneration [J].
Shaikh, Shazia ;
Mehrotra, Shreya ;
van Bochove, Bas ;
Teotia, Arun Kumar ;
Singh, Prerna ;
Lauren, Isabella ;
Lindfors, Nina C. ;
Seppala, Jukka ;
Kumar, Ashok .
ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (47) :65378-65393
[39]   Design and implementation of 3-D printed radiation shields for environmental sensors [J].
Botero-Valencia, J. S. ;
Mejia-Herrera, M. ;
Pearce, Joshua M. .
HARDWAREX, 2022, 11
[40]   Design and Fabrication of a 3-D Printed Concentrating Solar Thermoelectric Generator for Energy Harvesting Based Wireless Sensor Nodes [J].
Estrada-Lopez, Johan J. ;
Castillo-Atoche, Alejandro A. ;
Sanchez-Sinencio, Edgar .
IEEE SENSORS LETTERS, 2019, 3 (11)