One-dimensional Bose-Fermi-Hubbard model in the heavy-fermion limit

被引:44
作者
Mering, A. [1 ]
Fleischhauer, M. [1 ]
机构
[1] Tech Univ Kaiserslautern, Fachbereich Phys, D-67663 Kaiserslautern, Germany
来源
PHYSICAL REVIEW A | 2008年 / 77卷 / 02期
关键词
D O I
10.1103/PhysRevA.77.023601
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the phase diagram of the zero-temperature, one-dimensional Bose-Fermi-Hubbard model for fixed fermion density in the limit of small fermionic hopping. This model can be regarded as an instance of a disordered Bose-Hubbard model with dichotomic values of the stochastic variables. Phase boundaries between compressible, incompressible (Mott-insulating), and partially compressible phases are derived analytically within a generalized strong-coupling expansion and numerically using density matrix renormalization group (DMRG) methods. We show that first-order correlations in the partially compressible phases decay exponentially, indicating a glass-type behavior. Fluctuations within the respective incompressible phases are determined using perturbation theory and are compared to DMRG results.
引用
收藏
页数:11
相关论文
共 33 条
[1]   Mixtures of bosonic and fermionic atoms in optical lattices [J].
Albus, A ;
Illuminati, F ;
Eisert, J .
PHYSICAL REVIEW A, 2003, 68 (02) :11
[2]  
BLOCH I, IN PRESS REV MOD PHY
[3]   Supersolid versus phase separation in atomic Bose-Fermi mixtures -: art. no. 130404 [J].
Büchler, HP ;
Blatter, G .
PHYSICAL REVIEW LETTERS, 2003, 91 (13)
[4]   Fractional-filling loophole insulator domains for ultracold bosons in optical superlattices [J].
Buonsante, P ;
Penna, V ;
Vezzani, A .
PHYSICAL REVIEW A, 2004, 70 (06) :061603-1
[5]   Cell strong-coupling perturbative approach to the phase diagram of ultracold bosons in optical superlattices [J].
Buonsante, P ;
Vezzani, A .
PHYSICAL REVIEW A, 2005, 72 (01)
[6]   Mean-field description of ultracold bosons on disordered two-dimensional optical lattices [J].
Buonsante, Pierfrancesco ;
Massel, Francesco ;
Penna, Vittorio ;
Vezzani, Alessandro .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2007, 40 (17) :F265-F273
[7]   Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices [J].
Cramer, M ;
Eisert, J ;
Illuminati, F .
PHYSICAL REVIEW LETTERS, 2004, 93 (19) :190405-1
[8]   Mean-field theory of Bose-Fermi mixtures in optical lattices [J].
Fehrmann, H ;
Baranov, MA ;
Damski, B ;
Lewenstein, M ;
Santos, L .
OPTICS COMMUNICATIONS, 2004, 243 (1-6) :23-31
[9]   Expansion of a Fermi gas interacting with a Bose-Einstein condensate [J].
Ferlaino, F ;
de Mirandes, E ;
Roati, G ;
Modugno, G ;
Inguscio, M .
PHYSICAL REVIEW LETTERS, 2004, 92 (14) :140405-1
[10]  
FISHER MPA, 1989, PHYS REV B, V40, P546, DOI [10.1103/PhysRevB.40.546, 10.1063/1.38820]