Fibrations and stability for compact group actions on manifolds with local bounded Ricci covering geometry

被引:9
作者
Huang, Hongzhi [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
关键词
Fibrations; stability for group actions; nilpotent structures; Ricci curvature; bounded Ricci covering geometry; RIEMANNIAN-MANIFOLDS; CURVATURE; RIGIDITY; SPACES;
D O I
10.1007/s11464-020-0824-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the study of the collapsed manifolds with bounded sectional curvature, the following two results provide basic tools: a (singular) fibration theorem by K. Fukaya [J. Differential Geom., 1987, 25(1): 139-156] and J. Cheeger, K. Fukaya, and M. Gromov [J. Amer. Math. Soc., 1992, 5(2): 327-372], and the stability for isometric compact Lie group actions on manifolds by R. S. Palais [Bull. Amer. Math. Soc., 1961, 67(4): 362-364] and K. Grove and H. Karcher [Math. Z., 1973, 132: 11-20]. The main results in this paper (partially) generalize the two results to manifolds with local bounded Ricci covering geometry.
引用
收藏
页码:69 / 89
页数:21
相关论文
共 31 条
[1]   HAUSDORFF PERTURBATIONS OF RICCI-FLAT MANIFOLDS AND THE SPLITTING THEOREM [J].
ANDERSON, MT .
DUKE MATHEMATICAL JOURNAL, 1992, 68 (01) :67-82
[2]  
[Anonymous], 2001, LEZIONI FERMIANE
[3]  
Cheeger J, 1997, J DIFFER GEOM, V46, P406
[4]   Lower bounds on Ricci curvature and the almost rigidity of warped products [J].
Cheeger, J ;
Colding, TH .
ANNALS OF MATHEMATICS, 1996, 144 (01) :189-237
[5]  
Cheeger J, 2000, J DIFFER GEOM, V54, P37
[6]  
Cheeger J., ARXIV180507988
[7]  
Cheeger J., 1992, J AM MATH SOC, V5, P327
[8]   QUANTITATIVE VOLUME SPACE FORM RIGIDITY UNDER LOWER RICCI CURVATURE BOUND I [J].
Chen, Lina ;
Rong, Xiaochun ;
Xu, Shicheng .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2019, 113 (02) :227-272
[9]   QUANTITATIVE VOLUME SPACE FORM RIGIDITY UNDER LOWER RICCI CURVATURE BOUND II [J].
Chen, Lina ;
Rong, Xiaochun ;
Xu, Shicheng .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (06) :4509-4523
[10]   Shape of manifolds with positive Ricci curvature [J].
Colding, TH .
INVENTIONES MATHEMATICAE, 1996, 124 (1-3) :175-191