On averaging principle for diffusion processes with null-recurrent fast component

被引:24
作者
Khasminskii, R [1 ]
Krylov, N
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
averaging principle; null-recurrent diffusion; arcsine law; homogenization;
D O I
10.1016/S0304-4149(00)00097-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An averaging principle is proved for diffusion processes of type (X-epsilon(t), Y-epsilon(t)) with null-recurrent fast component X-epsilon(t). In contrast with positive recurrent setting, the slow component Y-epsilon(t) alone cannot be approximated by diffusion processes. However, one can approximate the pair (X-epsilon(t), Y-epsilon(t)) by a Markov diffusion with coefficients averaged in some sense. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:229 / 240
页数:12
相关论文
共 15 条
[1]  
[Anonymous], TRANSLATIONS MATH MO
[2]   UNIQUENESS FOR DIFFUSIONS WITH PIECEWISE CONSTANT-COEFFICIENTS [J].
BASS, RF ;
PARDOUX, E .
PROBABILITY THEORY AND RELATED FIELDS, 1987, 76 (04) :557-572
[3]  
CHAO YJ, 1999, THESIS U MINNESOTA
[4]  
FREIDLIN M. I., 2012, Random Perturbations of Dynamical Systems, Grundlehren der mathematischen Wissenschaften, V3rd
[5]  
Gikhman I.I., 1982, STOCHASTIC DIFFERENT
[6]  
Khas'minskii R. Z., 1968, Kybernetika, V4, P260
[7]   Arcsine law and one generalization [J].
Khasminskii, R .
ACTA APPLICANDAE MATHEMATICAE, 1999, 58 (1-3) :151-157
[8]  
Krylov N. V, 1969, SIB MAT J, V10, P244
[9]  
KRYLOV NV, 1977, CONTROLLED DIFFUSION
[10]  
LIPTSER R. S., 1989, Theory of martingales