A q-rious positivity

被引:19
作者
Warnaar, S. Ole [1 ]
Zudilin, W. [2 ]
机构
[1] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
[2] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia
基金
澳大利亚研究理事会;
关键词
Binomial coefficients; q-binomial coefficients; Gaussian polynomials; factorial ratios; basic hypergeometric series; cyclotomic polynomials; positivity; Q-BINOMIAL COEFFICIENTS; CONJECTURE;
D O I
10.1007/s00010-010-0055-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The q-binomial coefficients [(n)(m)] = Pi(m)(i=1) (1-q(n-m+i))/(1-q(i)), for integers 0 <= m <= n, are known to be polynomials with non-negative integer coefficients. This readily follows from the q-binomial theorem, or the many combinatorial interpretations of [(n)(m)]. In this note we conjecture an arithmetically motivated generalisation of the non-negativity property for products of ratios of q-factorials that happen to be polynomials.
引用
收藏
页码:177 / 183
页数:7
相关论文
共 18 条
[1]   On a conjecture of Peter Borwein [J].
Andrews, GE .
JOURNAL OF SYMBOLIC COMPUTATION, 1995, 20 (5-6) :487-501
[2]   Positivity preserving transformations for q-binomial coefficients [J].
Berkovich, A ;
Warnaar, SO .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (06) :2291-2351
[3]   Factorial ratios, hypergeometric series, and a family of step functions [J].
Bober, Jonathan W. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 79 :422-444
[4]  
BRESSOUD DM, 1996, ELECTRON J COMB, V3, P14
[5]  
Catalan E., 1874, NOUV ANN MATH, V13, P207
[6]  
DELAYGUE E, 2009, J REINE ANG IN PRESS
[7]  
Gasper G, 2004, ENCY MATH APPL, V96
[8]   SUPER BALLOT NUMBERS [J].
GESSEL, IM .
JOURNAL OF SYMBOLIC COMPUTATION, 1992, 14 (2-3) :179-194
[9]   Factors of alternating sums of products of binomial and q-binomial coefficients [J].
Guo, Victor J. W. ;
Jouhet, Frederic ;
Zeng, Jiang .
ACTA ARITHMETICA, 2007, 127 (01) :17-31
[10]  
LANDAU E., 1985, COLLECTED WORKS, V1