Fractional Langevin equations of distributed order

被引:74
作者
Eab, C. H. [1 ]
Lim, S. C. [2 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Dept Chem, Bangkok 10330, Thailand
[2] Multimedia Univ Malaysia, Fac Engn, Cyberjaya 63100, Selangor, Malaysia
来源
PHYSICAL REVIEW E | 2011年 / 83卷 / 03期
关键词
ANOMALOUS DIFFUSION; RANDOM-WALK; VARIABLE ORDER; DISCRETE; MODELS;
D O I
10.1103/PhysRevE.83.031136
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Distributed-order fractional Langevin-like equations are introduced and applied to describe anomalous diffusion without unique diffusion or scaling exponent. It is shown that these fractional Langevin equations of distributed order can be used to model the kinetics of retarding subdiffusion whose scaling exponent decreases with time and the strongly anomalous ultraslow diffusion with mean square displacement which varies asymptotically as a power of logarithm of time.
引用
收藏
页数:10
相关论文
共 57 条
  • [1] Abramowitz M., 1965, HDB MATH FUNCTIONS
  • [2] [Anonymous], 2006, THEORY APPL FRACTION
  • [3] [Anonymous], 1999, FRACTIONAL DIFFERENT
  • [4] Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations
    Atanackovic, Teodor M.
    Pilipovic, Stevan
    Zorica, Dusan
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2106): : 1893 - 1917
  • [5] Time distributed-order diffusion-wave equation. I. Volterra-type equation
    Atanackovic, Teodor M.
    Pilipovic, Stevan
    Zorica, Dusan
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2106): : 1869 - 1891
  • [6] ATANACKOVIC TM, 2005, J PHYS A, V6703
  • [7] AZMOODEH E, 2010, ARXIV10041071V2
  • [8] Bacry E, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.026103
  • [9] Bagley R., 2000, INT J APPL MATH, V2, P965
  • [10] Bagley R. L., 2000, Int. J. Appl. Math, V2, P865