Reconstructing the evolution of deceleration parameter with the non-parametric Bayesian method

被引:2
|
作者
Xu, Bing [1 ,2 ,3 ]
Xia, Li-Xin [4 ]
机构
[1] Anhui Sci & Technol Univ, Sch Elect & Elect Engn, Bengbu 233030, Anhui, Peoples R China
[2] Hunan Normal Univ, Dept Phys, Changsha 410081, Hunan, Peoples R China
[3] Hunan Normal Univ, Synergist Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Hunan, Peoples R China
[4] Kashgar Univ, Dept Phys, Kashgar 844006, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Cosmology; Cosmic acceleration; Deceleration parameter; BARYON ACOUSTIC-OSCILLATIONS; PROBE WMAP OBSERVATIONS; COSMIC ACCELERATION; SAMPLE;
D O I
10.1007/s10509-020-03755-z
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In order to answer the question of whether the current acceleration of the cosmic expansion is slowing down or not, in this paper we use a non-parametric Bayesian method to reconstruct the evolution of the deceleration parameter q(z)from the latest observations including the type Ia supernova data, the baryon acoustic oscillation data, the Planck cosmic microwave background data, the Hubble data as well as the local value of Hubble constant. We find that all the data support a currently increasing cosmic acceleration, a spatially flat universe is favored and the effects of the spatial curvature on the reconstructed result are negligible. Moreover, the evolution of q(z) displays an oscillatory behavior, which is preferred by observations at the 3.2 sigma confidence level as compared with that in the CDM. But, the reconstructed q(z) is punished by the Bayesian information criteria due to more many model parameters.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Marginally specified priors for non-parametric Bayesian estimation
    Kessler, David C.
    Hoff, Peter D.
    Dunson, David B.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (01) : 35 - 58
  • [42] A Non-parametric Bayesian Network Prior of Human Pose
    Lehrmann, Andreas M.
    Gehler, Peter V.
    Nowozin, Sebastian
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1281 - 1288
  • [43] Bayesian non-parametric models for regional prevalence estimation
    Branscum, Adam J.
    Hanson, Timothy E.
    Gardner, Ian A.
    JOURNAL OF APPLIED STATISTICS, 2008, 35 (05) : 567 - 582
  • [44] Non-parametric Bayesian analysis of clustered survival data
    Lee, Jaeyong
    STATISTICS, 2008, 42 (06) : 515 - 526
  • [45] BAYESIAN NON-PARAMETRIC DETECTOR BASED ON THE REPLACEMENT MODEL
    Matteoli, Stefania
    Diani, Marco
    Corsini, Giovanni
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 871 - 874
  • [46] Non-parametric Bayesian estimation of a spatial Poisson intensity
    Heikkinen, J
    Arjas, E
    SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (03) : 435 - 450
  • [47] Statistics for N = 1: A Non-Parametric Bayesian Approach
    Leppink, Jimmie
    SCIENTIA MEDICA, 2020, 30 (01)
  • [48] A NON-PARAMETRIC BAYESIAN CLUSTERING FOR GENE EXPRESSION DATA
    Wang, Liming
    Wang, Xiaodong
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 556 - 559
  • [49] A Bayesian approach to non-parametric monotone function estimation
    Shively, Thomas S.
    Sager, Thomas W.
    Walker, Stephen G.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 159 - 175
  • [50] Non-parametric Bayesian inference of strategies in repeated games
    Kleiman-Weiner, Max
    Tenenbaum, Joshua B.
    Zhou, Penghui
    ECONOMETRICS JOURNAL, 2018, 21 (03): : 298 - 315