Reconstructing the evolution of deceleration parameter with the non-parametric Bayesian method

被引:2
|
作者
Xu, Bing [1 ,2 ,3 ]
Xia, Li-Xin [4 ]
机构
[1] Anhui Sci & Technol Univ, Sch Elect & Elect Engn, Bengbu 233030, Anhui, Peoples R China
[2] Hunan Normal Univ, Dept Phys, Changsha 410081, Hunan, Peoples R China
[3] Hunan Normal Univ, Synergist Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Hunan, Peoples R China
[4] Kashgar Univ, Dept Phys, Kashgar 844006, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Cosmology; Cosmic acceleration; Deceleration parameter; BARYON ACOUSTIC-OSCILLATIONS; PROBE WMAP OBSERVATIONS; COSMIC ACCELERATION; SAMPLE;
D O I
10.1007/s10509-020-03755-z
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In order to answer the question of whether the current acceleration of the cosmic expansion is slowing down or not, in this paper we use a non-parametric Bayesian method to reconstruct the evolution of the deceleration parameter q(z)from the latest observations including the type Ia supernova data, the baryon acoustic oscillation data, the Planck cosmic microwave background data, the Hubble data as well as the local value of Hubble constant. We find that all the data support a currently increasing cosmic acceleration, a spatially flat universe is favored and the effects of the spatial curvature on the reconstructed result are negligible. Moreover, the evolution of q(z) displays an oscillatory behavior, which is preferred by observations at the 3.2 sigma confidence level as compared with that in the CDM. But, the reconstructed q(z) is punished by the Bayesian information criteria due to more many model parameters.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] A non-parametric Bayesian model for bounded data
    Thanh Minh Nguyen
    Wu, Q. M. Jonathan
    PATTERN RECOGNITION, 2015, 48 (06) : 2084 - 2095
  • [22] Non-parametric Bayesian super-resolution
    Lane, R. O.
    IET RADAR SONAR AND NAVIGATION, 2010, 4 (04): : 639 - 648
  • [23] Non-Parametric Bayesian Constrained Local Models
    Martins, Pedro
    Caseiro, Rui
    Batista, Jorge
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1797 - 1804
  • [24] Efficient Non-parametric Bayesian Hawkes Processes
    Zhang, Rui
    Walder, Christian
    Rizoiu, Marian-Andrei
    Xie, Lexing
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4299 - 4305
  • [25] Non-parametric Bayesian inference on bivariate extremes
    Guillotte, Simon
    Perron, Francois
    Segers, Johan
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 : 377 - 406
  • [26] Spatial non-parametric Bayesian clustered coefficients
    Areed, Wala Draidi
    Price, Aiden
    Thompson, Helen
    Malseed, Reid
    Mengersen, Kerrie
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [27] Non-parametric reconstruction of the cosmological jerk parameter
    Purba Mukherjee
    Narayan Banerjee
    The European Physical Journal C, 2021, 81
  • [28] Non-parametric reconstruction of the cosmological jerk parameter
    Mukherjee, Purba
    Banerjee, Narayan
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (01):
  • [29] Two general methods for population pharmacokinetic modeling: non-parametric adaptive grid and non-parametric Bayesian
    Tatiana Tatarinova
    Michael Neely
    Jay Bartroff
    Michael van Guilder
    Walter Yamada
    David Bayard
    Roger Jelliffe
    Robert Leary
    Alyona Chubatiuk
    Alan Schumitzky
    Journal of Pharmacokinetics and Pharmacodynamics, 2013, 40 : 189 - 199
  • [30] Two general methods for population pharmacokinetic modeling: non-parametric adaptive grid and non-parametric Bayesian
    Tatarinova, Tatiana
    Neely, Michael
    Bartroff, Jay
    van Guilder, Michael
    Yamada, Walter
    Bayard, David
    Jelliffe, Roger
    Leary, Robert
    Chubatiuk, Alyona
    Schumitzky, Alan
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2013, 40 (02) : 189 - 199