Measures of non-compactness of classical embeddings of Sobolev spaces

被引:9
|
作者
Hencl, S [1 ]
机构
[1] Charles Univ, Dept Math Anal, Prague 18600, Czech Republic
关键词
entropy numbers; measure of non-compactness; embeddings of Sobolev spaces; ENTROPY NUMBERS;
D O I
10.1002/mana.200310085
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be an open subset of R-n and let p is an element of [1, n). We prove that the measure of non-compactness of the Sobolev embedding W-0(k,p)(Omega) --> L-P* (Omega) is equal to its norm. This means that the entropy numbers of this embedding are constant and equal to the norm. The same is true, when lambda(n)(Omega) is small enough, for the embedding of W-0(1,n) (Omega) into the Orlicz space with Young function exp (t(n/(n-1))) - 1. The position is different for the embedding of W-0(1,p) (J) in C-0,C-1-1/p (J), J = (0, 1), when p is an element of (1, infinity): in this case the measure of noncompactness is less than the norm. (C) 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:28 / 43
页数:16
相关论文
共 50 条
  • [1] Measures of Non-Compactness and Sobolev-Lorentz Spaces
    Bouchala, Ondrej
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2020, 39 (01): : 27 - 40
  • [2] Maximal Non-compactness of Sobolev Embeddings
    Lang, Jan
    Musil, Vit
    Olsak, Miroslav
    Pick, Lubos
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (09) : 9406 - 9431
  • [3] On measures of non-compactness and applications to embeddings
    Yerzakova, NA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (01) : 535 - 540
  • [4] On some measures of non-compactness associated to Banach operator ideals
    Manzano, Antonio
    Mastylo, Mieczyslaw
    JOURNAL OF APPROXIMATION THEORY, 2023, 285
  • [5] Measures of non-compactness of operators on Banach lattices
    Troitsky, VG
    POSITIVITY, 2004, 8 (02) : 165 - 178
  • [6] On a Measure of Non-compactness for Some Classical Operators
    David E.EDMUNDS
    Alberto FIORENZA
    Alexander MESKHI
    Acta Mathematica Sinica(English Series), 2006, 22 (06) : 1847 - 1862
  • [7] On a measure of non-compactness for some classical operators
    Edmunds, David E.
    Fiorenza, Alberto
    Meskhi, Alexander
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (06) : 1847 - 1862
  • [8] Measures of Non-compactness of Operators on Banach Lattices
    Vladimir G. Troitsky
    Positivity, 2004, 8 : 165 - 178
  • [9] NECESSARY AND SUFFICIENT CONDITIONS OF COMPACTNESS OF CERTAIN EMBEDDINGS OF SOBOLEV SPACES
    Burenkov, V. I.
    Tararykova, T. V.
    EURASIAN MATHEMATICAL JOURNAL, 2019, 10 (04): : 14 - 23
  • [10] Abstract K and J spaces and measure of non-compactness
    Cobos, Fernando
    Fernandez-Cabrera, Luz M.
    Martinez, Anton
    MATHEMATISCHE NACHRICHTEN, 2007, 280 (15) : 1698 - 1708