An optimal and low computational cost fractional Newton-type method for solving nonlinear equations

被引:29
作者
Candelario, Giro [1 ]
Cordero, Alicia [2 ]
Torregrosa, Juan R. [2 ]
Vassileva, Maria P. [1 ]
机构
[1] Inst Tecnol Santo Domingo, Area Ciencias Basicas & Ambientales, Santo Domingo, Dominican Rep
[2] Univ Politecn Valencia, Inst Matemat Multidisciplinar, Valencia, Spain
关键词
Nonlinear equations; Conformable fractional derivatives; Newton's method; Quadratic convergence; Computational cost; Stability;
D O I
10.1016/j.aml.2021.107650
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In recent papers, some fractional Newton-type methods have been proposed by using the Riemann-Liouville and Caputo fractional derivatives in their iterative schemes, with order 2 alpha or 1+alpha. In this manuscript, we introduce the Conformable fractional Newton-type method by using the so-called fractional derivative. The convergence analysis is made, proving its quadratic convergence, and the numerical results confirm the theory and improve the results obtained by classical Newton's method. Unlike previous fractional Newton-type methods, this one involves a low computational cost, and the order of convergence is at least quadratic. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 11 条
[1]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[2]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[3]   A fractional Newton method with 2αth-order of convergence and its stability [J].
Akgul, Ali ;
Cordero, Alicia ;
Torregrosa, Juan R. .
APPLIED MATHEMATICS LETTERS, 2019, 98 :344-351
[4]   Different anomalies in a Jarratt family of iterative root-finding methods [J].
Alberto Magrenan, A. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 :29-38
[5]   Multipoint Fractional Iterative Methods with (2α+1)th-Order of Convergence for Solving Nonlinear Problems [J].
Candelario, Giro ;
Cordero, Alicia ;
Torregrosa, Juan R. .
MATHEMATICS, 2020, 8 (03)
[6]   Variants of Newton's Method using fifth-order quadrature formulas [J].
Cordero, A. ;
Torregrosa, Juan R. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) :686-698
[7]   A new definition of fractional derivative [J].
Khalil, R. ;
Al Horani, M. ;
Yousef, A. ;
Sababheh, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 264 :65-70
[8]   OPTIMAL ORDER OF ONE-POINT AND MULTIPOINT ITERATION [J].
KUNG, HT ;
TRAUB, JF .
JOURNAL OF THE ACM, 1974, 21 (04) :643-651
[9]  
Lanczos C., 1964, SIAM J NUMER ANAL B, V1, P86, DOI DOI 10.1137/0701008
[10]  
Miller KS, 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations