Doubly robust tests of exposure effects under high-dimensional confounding

被引:13
作者
Dukes, Oliver [1 ]
Avagyan, Vahe [2 ]
Vansteelandt, Stijn [1 ,3 ]
机构
[1] Univ Ghent, Dept Appl Math Comp Sci & Stat, Krijgslaan 281 S9, B-9000 Ghent, Belgium
[2] Wageningen Univ & Res, Math & Stat Methods Grp, Wageningen, Netherlands
[3] London Sch Hyg & Trop Med, Dept Med Stat, London, England
关键词
causal inference; doubly robust estimation; high-dimensional inference; post-selection inference; CONFIDENCE-REGIONS; INFERENCE; SELECTION;
D O I
10.1111/biom.13231
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
After variable selection, standard inferential procedures for regression parameters may not be uniformly valid; there is no finite-sample size at which a standard test is guaranteed to approximately attain its nominal size. This problem is exacerbated in high-dimensional settings, where variable selection becomes unavoidable. This has prompted a flurry of activity in developing uniformly valid hypothesis tests for a low-dimensional regression parameter (eg, the causal effect of an exposure A on an outcome Y) in high-dimensional models. So far there has been limited focus on model misspecification, although this is inevitable in high-dimensional settings. We propose tests of the null that are uniformly valid under sparsity conditions weaker than those typically invoked in the literature, assuming working models for the exposure and outcome are both correctly specified. When one of the models is misspecified, by amending the procedure for estimating the nuisance parameters, our tests continue to be valid; hence, they are doubly robust. Our proposals are straightforward to implement using existing software for penalized maximum likelihood estimation and do not require sample splitting. We illustrate them in simulations and an analysis of data obtained from the Ghent University intensive care unit.
引用
收藏
页码:1190 / 1200
页数:11
相关论文
共 23 条
[1]  
[Anonymous], ANN STAT
[2]  
Avagyan Vahe., 2017, ARXIV170803787
[3]   Post-Selection Inference for Generalized Linear Models With Many Controls [J].
Belloni, Alexandre ;
Chernozhukov, Victor ;
Wei, Ying .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2016, 34 (04) :606-619
[4]   Inference on Treatment Effects after Selection among High-Dimensional ControlsaEuro [J].
Belloni, Alexandre ;
Chernozhukov, Victor ;
Hansen, Christian .
REVIEW OF ECONOMIC STUDIES, 2014, 81 (02) :608-650
[5]   Double/debiased machine learning for treatment and structural parameters [J].
Chernozhukov, Victor ;
Chetverikov, Denis ;
Demirer, Mert ;
Duflo, Esther ;
Hansen, Christian ;
Newey, Whitney ;
Robins, James .
ECONOMETRICS JOURNAL, 2018, 21 (01) :C1-C68
[6]  
Chernozhukov V, 2016, R J, V8, P185
[7]  
Chetverikov D., 2016, ARXIV160502214
[8]   How to obtain valid tests and confidence intervals after propensity score variable selection? [J].
Dukes, Oliver ;
Vansteelandt, Stijn .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (03) :677-694
[9]   Robust inference on average treatment effects with possibly more covariates than observations [J].
Farrell, Max H. .
JOURNAL OF ECONOMETRICS, 2015, 189 (01) :1-23
[10]   Intensive versus Conventional Glucose Control in Critically Ill Patients [J].
Finfer, S. ;
Blair, D. ;
Bellomo, R. ;
McArthur, C. ;
Mitchell, I. ;
Myburgh, J. ;
Norton, R. ;
Potter, J. ;
Chittock, D. ;
Dhingra, V. ;
Foster, D. ;
Cook, D. ;
Dodek, P. ;
Hebert, P. ;
Henderson, W. ;
Heyland, D. ;
McDonald, E. ;
Ronco, J. ;
Schweitzer, L. ;
Peto, R. ;
Sandercock, P. ;
Sprung, C. ;
Young, J. D. ;
Su, S. ;
Heritier, S. ;
Li, Q. ;
Bompoint, S. ;
Billot, L. ;
Crampton, L. ;
Darcy, F. ;
Jayne, K. ;
Kumarasinghe, V. ;
Little, L. ;
McEvoy, S. ;
MacMahon, S. ;
Pandey, S. ;
Ryan, S. ;
Shukla, R. ;
Vijayan, B. ;
Atherton, S. ;
Bell, J. ;
Hadfield, L. ;
Hourigan, C. ;
McArthur, C. ;
Newby, L. ;
Simmonds, C. ;
Buhr, H. ;
Eccleston, M. ;
McGuinness, S. ;
Parke, R. .
NEW ENGLAND JOURNAL OF MEDICINE, 2009, 360 (13) :1283-1297