On a theorem of Sarkozy for difference sets and shifted primes

被引:7
作者
Wang, Ruoyi [1 ]
机构
[1] Univ Oxford, Math Inst, Radcliffe Observ Quarter,Woodstock Rd, Oxford OX2 6GG, England
关键词
Difference sets; Prime numbers; Hardy-Littlewood method; SEQUENCES;
D O I
10.1016/j.jnt.2019.10.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if the difference of two elements of a set A subset of [N] is never one less than a prime number, then vertical bar A vertical bar = O(N exp(-c(log N)(1/3))) for some absolute constant c > 0. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:220 / 234
页数:15
相关论文
共 7 条
[1]  
Iwaniec H., 2004, C PUBLICATIONS, V53
[2]   Difference sets and shifted primes [J].
Lucier, J. .
ACTA MATHEMATICA HUNGARICA, 2008, 120 (1-2) :79-102
[3]  
PINTZ J, 1988, J LOND MATH SOC, V37, P219
[4]   Difference sets and the primes [J].
Ruzsa, Imre Z. ;
Sanders, Tom .
ACTA ARITHMETICA, 2008, 131 (03) :281-301
[5]   DIFFERENCE SETS OF SEQUENCES OF INTEGERS .1. [J].
SARKOZY, A .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1978, 31 (1-2) :125-149
[6]   DIFFERENCE SETS OF SEQUENCES OF INTEGERS .3. [J].
SARKOZY, A .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1978, 31 (3-4) :355-386
[7]  
Sarkozy A., 1979, ANN U SCI BUDAP, V21, P45