Boundary-value problem for a class of second-order parameter-dependent dynamic equations on a time scale

被引:3
作者
Ozkan, A. Sinan [1 ]
机构
[1] Cumhuriyet Univ, Fac Sci, Dept Math, TR-58140 Sivas, Turkey
关键词
disconjugacy; dynamic equations on time scales or measure chains; eigenvalue problems; Sturm-Liouville theory; L-2; SPACES;
D O I
10.1002/mma.6197
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we consider a boundary value problem generated by a second-order dynamic equation on a time scale and boundary conditions depending on the spectral parameter. We give some properties of the solutions and obtain a formulation of the number of eigenvalues of the problem.
引用
收藏
页码:4353 / 4359
页数:7
相关论文
共 23 条
  • [1] Sturm-Liouville eigenvalue problems on time scales
    Agarwal, RP
    Bohner, M
    Wong, PJY
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1999, 99 (2-3) : 153 - 166
  • [2] ALLAHVERDIEV BP, 2017, ELECT J DIFFERENTIAL, V2017, P1
  • [3] Eigenvalue distribution of second-order dynamic equations on time scales considered as fractals
    Amster, Pablo
    De Napoli, Pablo
    Pinasco, Juan Pablo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (01) : 573 - 584
  • [4] Detailed asymptotic of eigenvalues on time scales
    Amster, Pablo
    De Napoli, Pablo
    Pinasco, Juan Pablo
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2009, 15 (03) : 225 - 231
  • [5] [Anonymous], 2009, NONLINEAR DYN SYST T
  • [6] Atkinson F. V., 1964, Discrete and continuous boundary problems, V2
  • [7] Bohner M., 2003, ADV DYNAMIC EQUATION, DOI DOI 10.1007/978-0-8176-8230-9
  • [8] Bohner Martin., 2001, DYNAMIC EQUATIONS TI, DOI DOI 10.1007/978-1-4612-0201-1
  • [9] Global bifurcation on time scales
    Davidson, FA
    Rynne, BP
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 267 (01) : 345 - 360
  • [10] Eigenfunction expansions in L2 spaces for boundary value problems on time-scales
    Davidson, Fordyce A.
    Rynne, Bryan P.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) : 1038 - 1051