Boundary-value problem for a class of second-order parameter-dependent dynamic equations on a time scale

被引:3
作者
Ozkan, A. Sinan [1 ]
机构
[1] Cumhuriyet Univ, Fac Sci, Dept Math, TR-58140 Sivas, Turkey
关键词
disconjugacy; dynamic equations on time scales or measure chains; eigenvalue problems; Sturm-Liouville theory; L-2; SPACES;
D O I
10.1002/mma.6197
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we consider a boundary value problem generated by a second-order dynamic equation on a time scale and boundary conditions depending on the spectral parameter. We give some properties of the solutions and obtain a formulation of the number of eigenvalues of the problem.
引用
收藏
页码:4353 / 4359
页数:7
相关论文
共 23 条
[1]   Sturm-Liouville eigenvalue problems on time scales [J].
Agarwal, RP ;
Bohner, M ;
Wong, PJY .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 99 (2-3) :153-166
[2]  
ALLAHVERDIEV BP, 2017, ELECT J DIFFERENTIAL, V2017, P1
[3]   Eigenvalue distribution of second-order dynamic equations on time scales considered as fractals [J].
Amster, Pablo ;
De Napoli, Pablo ;
Pinasco, Juan Pablo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (01) :573-584
[4]   Detailed asymptotic of eigenvalues on time scales [J].
Amster, Pablo ;
De Napoli, Pablo ;
Pinasco, Juan Pablo .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2009, 15 (03) :225-231
[5]  
[Anonymous], 2009, NONLINEAR DYN SYST T
[6]  
Atkinson F. V., 1964, Discrete and continuous boundary problems, V2
[7]  
Bohner M., 2003, ADV DYNAMIC EQUATION, DOI DOI 10.1007/978-0-8176-8230-9
[8]  
Bohner Martin., 2001, DYNAMIC EQUATIONS TI, DOI DOI 10.1007/978-1-4612-0201-1
[9]   Global bifurcation on time scales [J].
Davidson, FA ;
Rynne, BP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 267 (01) :345-360
[10]   Eigenfunction expansions in L2 spaces for boundary value problems on time-scales [J].
Davidson, Fordyce A. ;
Rynne, Bryan P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) :1038-1051