The effect of variance function estimation on nonlinear calibration inference in immunoassay data

被引:22
|
作者
Belanger, BA
Davidian, M
Giltinan, DM
机构
[1] HARVARD UNIV,SCH PUBL HLTH,DEPT BIOSTAT,BOSTON,MA 02115
[2] GENENTECH INC,DEPT BIOSTAT,S SAN FRANCISCO,CA 94080
关键词
assay; confidence interval; generalized least squares; heteroscedasticity; variance function estimation;
D O I
10.2307/2533153
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Often with data from immunoassays, the concentration-response relationship is nonlinear and intraassay response variance is heterogeneous. Estimation of the standard curve is usually based on a nonlinear heteroscedastic regression model for concentration-response, where variance is modeled as a function of mean response and additional variance parameters. This paper discusses calibration inference for immunoassay data which exhibit this nonlinear heteroscedastic mean-variance relationship. An assessment of the effect of variance function estimation in three types of approximate large-sample confidence intervals for unknown concentrations is given by theoretical and empirical investigation and application to two examples. A major finding is that the accuracy of such calibration intervals depends critically on the nature of response variance and the quality with which variance parameters are estimated.
引用
收藏
页码:158 / 175
页数:18
相关论文
共 49 条
  • [1] The effect of serial dilution error on calibration inference in immunoassay
    Higgins, KM
    Davidian, M
    Chew, G
    Burge, H
    BIOMETRICS, 1998, 54 (01) : 19 - 32
  • [2] Calibration inference based on multiple runs of an immunoassay
    Zeng, Q
    Davidian, M
    BIOMETRICS, 1997, 53 (04) : 1304 - 1317
  • [3] Variance estimation in the analysis of microarray data
    Wang, Yuedong
    Ma, Yanyuan
    Carroll, Raymond J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 425 - 445
  • [4] Improving variance function estimation in semiparametric longitudinal data analysis
    Leng, Chenlei
    Tang, Cheng Yong
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (04): : 656 - 670
  • [5] Oracle-efficient estimation and global inferences for variance function of functional data
    Cai, Li
    Wang, Suojin
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2025, 234
  • [6] LOCAL MEDIAN ESTIMATION OF VARIANCE FUNCTION
    杨瑛
    W.C.Ip
    Y.K.Kwan
    P.Y.K.Kwan
    ActaMathematicaScientia, 2004, (01) : 28 - 38
  • [7] Local median estimation of variance function
    Yang, Y
    Ip, WC
    Kwan, YK
    Kwan, PYK
    ACTA MATHEMATICA SCIENTIA, 2004, 24 (01) : 28 - 38
  • [8] A restricted maximum likelihood procedure for estimating the variance function of an immunoassay
    O'Malley, A. James
    Smith, Murray H.
    Sadler, William A.
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2008, 50 (02) : 161 - 177
  • [9] Bootstrap Statistical Inference for the Variance Based on Fuzzy Data
    Akbari, Mohammad Ghasem
    Rezaei, Abdolhamid
    AUSTRIAN JOURNAL OF STATISTICS, 2009, 38 (02) : 121 - 130
  • [10] JACKKNIFE EMPIRICAL LIKELIHOOD INFERENCE FOR THE VARIANCE RESIDUAL LIFE FUNCTION
    Zardasht, Vali
    REVSTAT-STATISTICAL JOURNAL, 2021, 19 (01) : 23 - 34