The statistics of fixation times for systems with recruitment

被引:4
作者
Biancalani, Tommaso [1 ]
Dyson, Louise [2 ]
McKane, Alan J. [2 ]
机构
[1] Univ Illinois, Dept Phys, Loomis Lab Phys, Urbana, IL 61801 USA
[2] Univ Manchester, Sch Phys & Astron, Div Theoret Phys, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会; 美国国家航空航天局;
关键词
exact results; population dynamics (theory); stochastic processes; BEHAVIOR;
D O I
10.1088/1742-5468/2015/01/P01013
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We investigate the statistics of the time taken for a system driven by recruitment to reach fixation. Our model describes a series of experiments where a population is confronted with two identical options, resulting in the system fixating on one of the options. For a specific population size, we show that the time distribution behaves like an inverse Gaussian with an exponential decay. Varying the population size reveals that the timescale of the decay depends on the population size and allows the critical population number, below which fixation occurs, to be estimated from experimental data.
引用
收藏
页数:13
相关论文
共 35 条
[1]   Langevin description of critical phenomena with two symmetric absorbing states -: art. no. 230601 [J].
Al Hammal, O ;
Chaté, H ;
Dornic, I ;
Muñoz, MA .
PHYSICAL REVIEW LETTERS, 2005, 94 (23)
[2]  
Armitage J. V., 2006, ELLIPTIC FUNCTIONS
[3]   Extrinsic Noise Driven Phenotype Switching in a Self-Regulating Gene [J].
Assaf, Michael ;
Roberts, Elijah ;
Luthey-Schulten, Zaida ;
Goldenfeld, Nigel .
PHYSICAL REVIEW LETTERS, 2013, 111 (05)
[4]   A NOTE ON RESTAURANT PRICING AND OTHER EXAMPLES OF SOCIAL INFLUENCES ON PRICE [J].
BECKER, GS .
JOURNAL OF POLITICAL ECONOMY, 1991, 99 (05) :1109-1116
[5]   Noise-Induced Bistable States and Their Mean Switching Time in Foraging Colonies [J].
Biancalani, Tommaso ;
Dyson, Louise ;
McKane, Alan J. .
PHYSICAL REVIEW LETTERS, 2014, 112 (03)
[6]   Noise-induced metastability in biochemical networks [J].
Biancalani, Tommaso ;
Rogers, Tim ;
McKane, Alan J. .
PHYSICAL REVIEW E, 2012, 86 (01)
[7]   Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions [J].
Biane, P ;
Pitman, J ;
Yor, M .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 38 (04) :435-465
[8]  
Blythe R, 2009, J STAT MECH-THEORY E, V2009
[9]  
Croft W., 2000, Explaining language change: An evolutionary approach
[10]   STABILITY AND DYNAMICS OF A NOISE-INDUCED STATIONARY STATE [J].
DOERING, CR .
PHYSICAL REVIEW A, 1986, 34 (03) :2564-2567