Boosting Surface-Dominated Sodium Storage of Carbon Anode Enabled by Coupling Graphene Nanodomains, Nitrogen-Doping, and Nanoarchitecture Engineering

被引:73
作者
Huang, Si [1 ,2 ]
Yang, Dongjie [1 ,2 ]
Qiu, Xueqing [3 ]
Zhang, Wenli [3 ]
Qin, Yanlin [3 ]
Wang, Caiwei [1 ,2 ]
Yi, Conghua [1 ,2 ]
机构
[1] South China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510640, Peoples R China
[2] South China Univ Technol, Guangdong Prov Engn Res Ctr Green Fine Chem, Guangzhou 510006, Peoples R China
[3] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
anodes; in situ polycondensation; lignin-derived carbon; nitrogen doping; sodium-ion batteries; DOPED POROUS CARBON; HARD CARBON; ION BATTERIES; INSIGHTS; CAPACITY; FILM;
D O I
10.1002/adfm.202203279
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of high-performance carbon anode for sodium-ion batteries is limited by the sluggish kinetics and structural instability. Expanded interlayer spacing, nitrogen doping, and mesoporous structure engineering have emerged as promising strategies to overcome these challenges. Simultaneously achieving graphene nanodomains construction, high-efficient nitrogen doping, and rational mesoporous structure engineering is challenging. Herein, a strategy of pyrolyzing SiO2@ lignin amine urea-formaldehyde resin is proposed for deliberate manipulation of graphene nanodomains, edge-nitrogen doping, and specific mesoporous distribution in amorphous lignin-derived carbon based on polycondensation-template. The obtained carbon material exhibits a nitrogen-doping level of 6.03 at% with a high edge-nitrogen ratio of up to 84.4%, high- connectivity mesoporous structure, and graphene nanodomains with expanded interlayer spacing. The optimized carbon material delivers a reversible capacity of 234 mAh g(-1) at 100 mA g(-1), superior rate capability of 129 mAh g(-1) at 2 A g(-1), and excellent cycling stability. In addition, the surface-dominated sodium-ion storage mechanism is identified by in situ electrochemical impedance spectroscopy. Furthermore, the optimized carbon can function as an outstanding anode for full cells. This work proposes a new avenue for designing high-performance carbon for low-cost and high-rate sodium-ion batteries.
引用
收藏
页数:9
相关论文
共 57 条
[11]   Effect of Intrinsic Defects of Carbon Materials on the Sodium Storage Performance [J].
Guo, Ruiqi ;
Lv, Chunxiao ;
Xu, Wenjia ;
Sun, Junwei ;
Zhu, Yukun ;
Yang, Xianfeng ;
Li, Junzhi ;
Sun, Jin ;
Zhang, Lixue ;
Yang, Dongjiang .
ADVANCED ENERGY MATERIALS, 2020, 10 (09)
[12]   Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries [J].
Hao, Rui ;
Yang, Yun ;
Wang, Hua ;
Jia, Binbin ;
Ma, Guanshui ;
Yu, Dandan ;
Guo, Lin ;
Yang, Shihe .
NANO ENERGY, 2018, 45 :220-228
[13]   Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage [J].
Hong, Wanwan ;
Zhang, Yu ;
Yang, Li ;
Tian, Ye ;
Ge, Peng ;
Hu, Jiugang ;
Wei, Weifeng ;
Zou, Guoqiang ;
Hou, Hongshuai ;
Ji, Xiaobo .
NANO ENERGY, 2019, 65
[14]   A Stable Biomass-Derived Hard Carbon Anode for High-Performance Sodium-Ion Full Battery [J].
Hu, Hai-Yan ;
Xiao, Yao ;
Ling, Wei ;
Wu, Yuan-Bo ;
Wang, Ping ;
Tan, Shuang-Jie ;
Xu, Yan-Song ;
Guo, Yu-Jie ;
Chen, Wan-Ping ;
Tang, Rui-Ren ;
Zeng, Xian-Xiang ;
Yin, Ya-Xia ;
Wu, Xiong-Wei .
ENERGY TECHNOLOGY, 2021, 9 (01)
[15]   Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries [J].
Hu, Xudong ;
Sun, Xiaohong ;
Yoo, Seung Joon ;
Evanko, Brian ;
Fan, Fengru ;
Cai, Shu ;
Zheng, Chunming ;
Hu, Wenbin ;
Stucky, Galen D. .
NANO ENERGY, 2019, 56 :828-839
[16]   Sodium/Potassium-Ion Batteries: Boosting the Rate Capability and Cycle Life by Combining Morphology, Defect and Structure Engineering [J].
Huang, Huijuan ;
Xu, Rui ;
Feng, Yuezhan ;
Zeng, Sifan ;
Jiang, Yu ;
Wang, Huijuan ;
Luo, Wei ;
Yu, Yan .
ADVANCED MATERIALS, 2020, 32 (08)
[17]  
Huang S., 2021, MICROPOR MESOPOR MAT, P317
[18]   N-Doping and Defective Nanographitic Domain Coupled Hard Carbon Nanoshells for High Performance Lithium/Sodium Storage [J].
Huang, Shifei ;
Li, Zhiping ;
Wang, Bo ;
Zhang, Jiujun ;
Peng, Zhangquan ;
Qi, Ruijuan ;
Wang, Jing ;
Zhao, Yufeng .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (10)
[19]   Hard-Soft Composite Carbon as a Long-Cycling and High-Rate Anode for Potassium-Ion Batteries [J].
Jian, Zelang ;
Hwang, Sooyeon ;
Li, Zhifei ;
Hernandez, Alexandre S. ;
Wang, Xingfeng ;
Xing, Zhenyu ;
Su, Dong ;
Ji, Xiulei .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (26)
[20]   Hard Carbon Microspheres: Potassium-Ion Anode Versus Sodium-Ion Anode [J].
Jian, Zelang ;
Xing, Zhenyu ;
Bommier, Clement ;
Li, Zhifei ;
Ji, Xiulei .
ADVANCED ENERGY MATERIALS, 2016, 6 (03)