Boosting Surface-Dominated Sodium Storage of Carbon Anode Enabled by Coupling Graphene Nanodomains, Nitrogen-Doping, and Nanoarchitecture Engineering

被引:73
作者
Huang, Si [1 ,2 ]
Yang, Dongjie [1 ,2 ]
Qiu, Xueqing [3 ]
Zhang, Wenli [3 ]
Qin, Yanlin [3 ]
Wang, Caiwei [1 ,2 ]
Yi, Conghua [1 ,2 ]
机构
[1] South China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510640, Peoples R China
[2] South China Univ Technol, Guangdong Prov Engn Res Ctr Green Fine Chem, Guangzhou 510006, Peoples R China
[3] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
anodes; in situ polycondensation; lignin-derived carbon; nitrogen doping; sodium-ion batteries; DOPED POROUS CARBON; HARD CARBON; ION BATTERIES; INSIGHTS; CAPACITY; FILM;
D O I
10.1002/adfm.202203279
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of high-performance carbon anode for sodium-ion batteries is limited by the sluggish kinetics and structural instability. Expanded interlayer spacing, nitrogen doping, and mesoporous structure engineering have emerged as promising strategies to overcome these challenges. Simultaneously achieving graphene nanodomains construction, high-efficient nitrogen doping, and rational mesoporous structure engineering is challenging. Herein, a strategy of pyrolyzing SiO2@ lignin amine urea-formaldehyde resin is proposed for deliberate manipulation of graphene nanodomains, edge-nitrogen doping, and specific mesoporous distribution in amorphous lignin-derived carbon based on polycondensation-template. The obtained carbon material exhibits a nitrogen-doping level of 6.03 at% with a high edge-nitrogen ratio of up to 84.4%, high- connectivity mesoporous structure, and graphene nanodomains with expanded interlayer spacing. The optimized carbon material delivers a reversible capacity of 234 mAh g(-1) at 100 mA g(-1), superior rate capability of 129 mAh g(-1) at 2 A g(-1), and excellent cycling stability. In addition, the surface-dominated sodium-ion storage mechanism is identified by in situ electrochemical impedance spectroscopy. Furthermore, the optimized carbon can function as an outstanding anode for full cells. This work proposes a new avenue for designing high-performance carbon for low-cost and high-rate sodium-ion batteries.
引用
收藏
页数:9
相关论文
共 57 条
[1]   Extended flat voltage profile of hard carbon synthesized using a two-step carbonization approach as an anode in sodium ion batteries [J].
Alvin, Stevanus ;
Yoon, Dohyeon ;
Chandra, Christian ;
Susanti, Ratna F. ;
Chang, Wonyoung ;
Ryu, Changkook ;
Kim, Jaehoon .
JOURNAL OF POWER SOURCES, 2019, 430 :157-168
[2]   New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon [J].
Bommier, Clement ;
Surta, Todd Wesley ;
Dolgos, Michelle ;
Ji, Xiulei .
NANO LETTERS, 2015, 15 (09) :5888-5892
[3]   Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization [J].
Chen, Dequan ;
Zhang, Wen ;
Luo, Kangying ;
Song, Yang ;
Zhong, Yanjun ;
Liu, Yuxia ;
Wang, Gongke ;
Zhong, Benhe ;
Wu, Zhenguo ;
Guo, Xiaodong .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (04) :2244-2262
[4]   Lignin-derived nitrogen-doped porous ultrathin layered carbon as a high-rate anode material for sodium-ion batteries [J].
Chen, Suli ;
Feng, Fan ;
Ma, Zi-Feng .
COMPOSITES COMMUNICATIONS, 2020, 22
[5]   Pseudocapacitive behaviours of Na2Ti3O7@CNT coaxial nanocables for high-performance sodium-ion capacitors [J].
Dong, Shengyang ;
Shen, Laifa ;
Li, Hongsen ;
Nie, Ping ;
Zhu, Yaoyao ;
Sheng, Qi ;
Zhang, Xiaogang .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (42) :21277-21283
[6]   Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry [J].
Dou, Xinwei ;
Hasa, Ivana ;
Saurel, Damien ;
Vaalma, Christoph ;
Wu, Liming ;
Buchholz, Daniel ;
Bresser, Dominic ;
Komaba, Shinichi ;
Passerini, Stefano .
MATERIALS TODAY, 2019, 23 :87-104
[7]   Lignin-Derived Nitrogen-Doped Porous Carbon as a High-Rate Anode Material for Sodium Ion Batteries [J].
Du, Leilei ;
Wu, Wei ;
Luo, Chao ;
Xu, Dongwei ;
Guo, Hanyu ;
Wang, Ruo ;
Zhang, Tian ;
Wang, Jun ;
Deng, Yonghong .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (02) :A423-A428
[8]   Hydrothermal Activation of Porous Nitrogen-Doped Carbon Materials for Electrochemical Capacitors and Sodium-Ion Batteries [J].
Fedoseeva, Yuliya, V ;
Lobiak, Egor, V ;
Shlyakhova, Elena, V ;
Kovalenko, Konstantin A. ;
Kuznetsova, Viktoriia R. ;
Vorfolomeeva, Anna A. ;
Grebenkina, Mariya A. ;
Nishchakova, Alina D. ;
Makarova, Anna A. ;
Bulusheva, Lyubov G. ;
Okotrub, Alexander, V .
NANOMATERIALS, 2020, 10 (11) :1-20
[9]   Insights on the Na+ ion storage mechanism in hard carbon: Discrimination between the porosity, surface functional groups and defects [J].
Ghimbeu, Camelia Matei ;
Gorka, Joanna ;
Simone, Virgine ;
Simonin, Loic ;
Martinet, Sebastien ;
Vix-Guterl, Cathie .
NANO ENERGY, 2018, 44 :327-335
[10]   Na-Ion Batteries-Approaching Old and New Challenges [J].
Goikolea, Eider ;
Palomares, Veronica ;
Wang, Shijian ;
de Larramendi, Idoia Ruiz ;
Guo, Xin ;
Wang, Guoxiu ;
Rojo, Teofilo .
ADVANCED ENERGY MATERIALS, 2020, 10 (44)