Euler product expression of triple zeta functions

被引:3
作者
Akatsuka, H [1 ]
机构
[1] Keio Univ, Dept Math, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
关键词
Euler product; absolute tenser product; multiple zeta function; multiple sine function;
D O I
10.1142/S0129167X05002825
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct multiple zeta functions considered as absolute tenser products of usual zeta functions. We establish Euler product expressions for triple zeta functions zeta(s, F-p) circle times zeta(s, F-q) circle times zeta(s, F-r) with p, q, r distinct primes, via multiple sine functions by using the signatured Poisson summation formula. We also establish Euler product expressions for triple zeta functions zeta(s, F-p) circle times zeta(s, F-p) circle times zeta(s, F-p) with a prime p, via the theory of multiple sine functions.
引用
收藏
页码:111 / 136
页数:26
相关论文
共 8 条
[1]  
Baker A., 1975, Transcendental number theory
[2]   LOCAL L-FACTORS OF MOTIVES AND REGULARIZED DETERMINANTS [J].
DENINGER, C .
INVENTIONES MATHEMATICAE, 1992, 107 (01) :135-150
[3]  
DENINGER C, 1998, P ICM DOC MATH, V1, P162
[4]   Multiple zeta functions: the double sine function anal the signed double Poisson summation formula [J].
Koyama, S ;
Kurokawa, N .
COMPOSITIO MATHEMATICA, 2004, 140 (05) :1176-1190
[5]   Absolute tensor products [J].
Kurokawa, N ;
Wakayama, M .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (05) :249-260
[6]   Multiple sine functions [J].
Kurokawa, N ;
Koyama, SY .
FORUM MATHEMATICUM, 2003, 15 (06) :839-876
[7]  
Kurokawa N., 1992, Adv. Stud. Pure Math., V21, P219, DOI DOI 10.2969/ASPM/02110219
[8]  
MANIN YI, 1999, ASTERISQUE, V228, P121