Cauchy Problem for a Stochastic Fractional Differential Equation with Caputo-Ito Derivative

被引:1
|
作者
Sanchez-Ortiz, Jorge [1 ]
Lopez-Cresencio, Omar U. [1 ]
Ariza-Hernandez, Francisco J. [1 ]
Arciga-Alejandre, Martin P. [1 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Av Lazaro Cardenas S-N Cd, Chilpancingo 39087, Guerrero, Mexico
关键词
brownian motion; Caputo-Ito derivative; Ito process; existence; uniqueness; CALCULUS;
D O I
10.3390/math9131479
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we define an operator on a space of Ito processes, which we call Caputo-Ito derivative, then we considerer a Cauchy problem for a stochastic fractional differential equation with this derivative. We demonstrate the existence and uniqueness by a contraction mapping argument and some examples are given.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] On the Nonlocal Problem for the Equation with the Hilfer Fractional Derivative
    Ashurov, R. R.
    Fayziev, Yu. E.
    Tukhtaeva, N. M.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (03) : 949 - 960
  • [22] ABSTRACT CAUCHY PROBLEM FOR FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATIONS
    Zhou, Yong
    Jiao, Feng
    Pecaric, Josip
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2013, 42 (01) : 119 - 136
  • [23] A Cauchy problem for some fractional abstract differential equation with non local conditions
    N'Guerekata, Gaston A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (05) : 1873 - 1876
  • [24] Existence of solutions of nonlocal Cauchy problem for some fractional abstract differential equation
    Deng, Jiqin
    Wang, Shunli
    APPLIED MATHEMATICS LETTERS, 2016, 55 : 42 - 48
  • [25] Hyers-Ulam stability for boundary value problem of fractional differential equations with κ$$ \kappa $$-Caputo fractional derivative
    Vu, Ho
    Rassias, John M.
    Hoa, Ngo Van
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (01) : 438 - 460
  • [26] Stability of solutions of Caputo fractional stochastic differential equations
    Xiao, Guanli
    Wang, JinRong
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2021, 26 (04): : 581 - 596
  • [27] Qualitative Analysis of Stochastic Caputo-Katugampola Fractional Differential Equations
    Khan, Zareen A.
    Liaqat, Muhammad Imran
    Akgul, Ali
    Conejero, J. Alberto
    AXIOMS, 2024, 13 (11)
  • [28] FRACTIONAL DIFFUSION EQUATION WITH DISTRIBUTED-ORDER CAPUTO DERIVATIVE
    Kubica, Adam
    Ryszewska, Katarzyna
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2019, 31 (02) : 195 - 243
  • [29] Neutral functional sequential differential equations with Caputo fractional derivative on time scales
    Lazreg, Jamal Eddine
    Benkhettou, Nadia
    Benchohra, Mouffak
    Karapinar, Erdal
    FIXED POINT THEORY AND ALGORITHMS FOR SCIENCES AND ENGINEERING, 2022, 2022 (01):
  • [30] NEW IMPULSIVE-INTEGRAL INEQUALITY FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH POISSON JUMPS AND CAPUTO FRACTIONAL DERIVATIVE
    Gao, Dongdong
    Li, Jianli
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (03): : 831 - 847