Cauchy Problem for a Stochastic Fractional Differential Equation with Caputo-Ito Derivative

被引:1
|
作者
Sanchez-Ortiz, Jorge [1 ]
Lopez-Cresencio, Omar U. [1 ]
Ariza-Hernandez, Francisco J. [1 ]
Arciga-Alejandre, Martin P. [1 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Av Lazaro Cardenas S-N Cd, Chilpancingo 39087, Guerrero, Mexico
关键词
brownian motion; Caputo-Ito derivative; Ito process; existence; uniqueness; CALCULUS;
D O I
10.3390/math9131479
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we define an operator on a space of Ito processes, which we call Caputo-Ito derivative, then we considerer a Cauchy problem for a stochastic fractional differential equation with this derivative. We demonstrate the existence and uniqueness by a contraction mapping argument and some examples are given.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] INVERSE PROBLEM FOR SUBDIFFUSION EQUATION WITH FRACTIONAL CAPUTO DERIVATIVE
    Ashurov, R. R.
    Shakarova, M. D.
    UFA MATHEMATICAL JOURNAL, 2024, 16 (01): : 112 - 126
  • [2] Fractional boundary value problem with ψ-Caputo fractional derivative
    Abdo, Mohammed S.
    Panchal, Satish K.
    Saeed, Abdulkafi M.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (05):
  • [3] Caputo–Hadamard fractional differential Cauchy problem in Fréchet spaces
    Saïd Abbas
    Mouffak Benchohra
    Farida Berhoun
    Johnny Henderson
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 2335 - 2344
  • [4] Caputo-Hadamard fractional differential Cauchy problem in Frechet spaces
    Abbas, Said
    Benchohra, Mouffak
    Berhoun, Farida
    Henderson, Johnny
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 2335 - 2344
  • [5] On the averaging principle for stochastic differential equations involving Caputo fractional derivative
    Xiao, Guanli
    Feckan, Michal
    Wang, JinRong
    CHAOS, 2022, 32 (10)
  • [6] Positive Solution of a Nonlinear Fractional Differential Equation Involving Caputo Derivative
    Wang, Changyou
    Zhang, Haiqiang
    Wang, Shu
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [7] Inverse Problem for a Fourth-Order Differential Equation with the Fractional Caputo Operator
    Durdiev, U. D.
    Rahmonov, A. A.
    RUSSIAN MATHEMATICS, 2024, 68 (09) : 18 - 28
  • [8] Linear fractional fuzzy differential equations with Caputo derivative
    Abdollahi, Rahman
    Moghimi, Mohamadbagher Farshbaf
    Khastan, Alireza
    Hooshmandasl, Mohammad Reza
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2019, 7 (02): : 252 - 265
  • [9] Obtaining a representation of the solution of the Cauchy problem for one equation with a fractional derivative and applying it to the equation of forced beam vibrations
    Irgashev, Bakhrom
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (06) : 6930 - 6948
  • [10] Abstract Cauchy problem for fractional differential equations
    Wang, JinRong
    Zhou, Yong
    Feckan, Michal
    NONLINEAR DYNAMICS, 2013, 71 (04) : 685 - 700