Cobalt Phosphide Coupled with Heteroatom-Doped Nanocarbon Hybrid Electroctalysts for Efficient, Long-Life Rechargeable Zinc-Air Batteries

被引:99
作者
Ahn, Sung Hoon [1 ,2 ,3 ]
Manthiram, Arumugam [1 ,2 ]
机构
[1] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[2] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[3] Chosun Univ, Dept Biochem & Polymer Engn, 309 Pilmun Daero, Gwangju 501759, South Korea
关键词
METAL-FREE CATALYST; OXYGEN REDUCTION; BIFUNCTIONAL ELECTROCATALYSTS; SELECTIVE OXIDATION; POROUS CARBON; EVOLUTION; NITROGEN; PHOSPHORUS; GRAPHENE; NANOSHEETS;
D O I
10.1002/smll.201702068
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal phosphides and heteroatom-doped carbons have been regarded as promising candidates as bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). However, both have suffered from stability issues during repeated ORR and OER operations in zinc-air batteries (ZABs). Herein, this study reports a versatile cobalt-based hybrid catalyst with a 1D structure by integrating the metal-organic framework-derived conversion approach and an in situ crosslinking method. Among them, the 1D hybrid catalyst composed of ultrasmall cobalt phosphide nanoparticles supported by nitrogen-, sulfur-, phosphorus-doped carbon matrix shows remarkable bifunctional activity close to that of the benchmark precious-metal catalysts along with an excellent durability in the full potential range covering both the OER and ORR. The overall overpotential of the rechargeable ZABs can be greatly reduced with this bifunctional hybrid catalyst as an air-electrode, and the cycling stability outperforms the commercial Pt/C catalyst. It is revealed that the cobalt phosphide nanoparticles are in situ converted to cobalt oxide under the accelerated conditions during OER (and/or ORR) of the ZABs and reduces the anodic current applied to the carbon. This contributes to the stability of the carbon material and in maintaining the high initial catalytic properties of the hybrid catalyst.
引用
收藏
页数:11
相关论文
共 40 条
[1]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[2]   Ultrathin cobalt phosphide nanosheets as efficient bifunctional catalysts for a water electrolysis cell and the origin for cell performance degradation [J].
Chang, Jinfa ;
Liang, Liang ;
Li, Chenyang ;
Wang, Minglei ;
Ge, Junjie ;
Liu, Changpeng ;
Xing, Wei .
GREEN CHEMISTRY, 2016, 18 (08) :2287-2295
[3]   From Bimetallic Metal-Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis [J].
Chen, Yu-Zhen ;
Wang, Chengming ;
Wu, Zhen-Yu ;
Xiong, Yujie ;
Xu, Qiang ;
Yu, Shu-Hong ;
Jiang, Hai-Long .
ADVANCED MATERIALS, 2015, 27 (34) :5010-5016
[4]   Highly Active and Durable Core-Corona Structured Bifunctional Catalyst for Rechargeable Metal-Air Battery Application [J].
Chen, Zhu ;
Yu, Aiping ;
Higgins, Drew ;
Li, Hui ;
Wang, Haijiang ;
Chen, Zhongwei .
NANO LETTERS, 2012, 12 (04) :1946-1952
[5]   An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes [J].
Dresp, Soeren ;
Luo, Fang ;
Schmack, Roman ;
Kuehl, Stefanie ;
Gliech, Manuel ;
Strasser, Peter .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (06) :2020-2024
[6]   Novel Hydrogel-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Air Cathodes [J].
Fu, Gengtao ;
Chen, Yifan ;
Cui, Zhiming ;
Li, Yutao ;
Zhou, Weidong ;
Xing, Sen ;
Tang, Yawen ;
Goodenough, John B. .
NANO LETTERS, 2016, 16 (10) :6516-6522
[7]   Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives [J].
Fu, Jing ;
Cano, Zachary Paul ;
Park, Moon Gyu ;
Yu, Aiping ;
Fowler, Michael ;
Chen, Zhongwei .
ADVANCED MATERIALS, 2017, 29 (07)
[8]   A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation [J].
Gorlin, Yelena ;
Jaramillo, Thomas F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (39) :13612-13614
[9]   Highly Active and Stable Graphene Tubes Decorated with FeCoNi Alloy Nanoparticles via a Template-Free Graphitization for Bifunctional Oxygen Reduction and Evolution [J].
Gupta, Shiva ;
Qiao, Liang ;
Zhao, Shuai ;
Xu, Hui ;
Lin, Ye ;
Devaguptapu, Surya V. ;
Wang, Xianliang ;
Swihart, Mark T. ;
Wu, Gang .
ADVANCED ENERGY MATERIALS, 2016, 6 (22)
[10]   Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media [J].
Gupta, Shiva ;
Kellogg, William ;
Xu, Hui ;
Liu, Xien ;
Cho, Jaephil ;
Wu, Gang .
CHEMISTRY-AN ASIAN JOURNAL, 2016, 11 (01) :10-21