Application of measures of noncompactness to the system of integral equations

被引:0
作者
Banaei, Shahram [2 ]
Samadi, Ayub [1 ]
机构
[1] Islamic Azad Univ, Dept Math, Miyaneh Branch, Miyaneh, Iran
[2] Islamic Azad Univ, Dept Math, Bonab Branch, Bonab, Iran
来源
COGENT MATHEMATICS & STATISTICS | 2019年 / 6卷
关键词
Darbo's fixed point theorem; measure of noncompactness; integral equations; FIXED-POINT THEOREMS; DIFFERENTIAL-EQUATIONS; INFINITE SYSTEM; SOLVABILITY; EXISTENCE; SPACES;
D O I
10.1080/25742558.2019.1702860
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, by applying a measure of noncompactness in the space L-infinity(R-n) and a new generalization of Darbo fixed point theorem, we study the existence of solutions for a class of the system of integral equations. Our main result is more general than the main result of [2]. Finally, an example is presented to show the usefulness of the outcome.
引用
收藏
页数:10
相关论文
共 19 条
  • [1] FIXED POINT THEOREMS FOR MEIR-KEELER CONDENSING OPERATORS VIA MEASURE OF NONCOMPACTNESS
    Aghajani, A.
    Mursaleen, M.
    Haghighi, A. Shole
    [J]. ACTA MATHEMATICA SCIENTIA, 2015, 35 (03) : 552 - 566
  • [2] A generalization of Darbo's theorem with application to the solvability of systems of integral equations
    Aghajani, A.
    Allahyari, R.
    Mursaleen, M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 260 : 68 - 77
  • [3] Allahyari R, 2018, RACSAM REV R ACAD A, V112, P561, DOI 10.1007/s13398-017-0397-4
  • [4] [Anonymous], 1930, Fund. Math, DOI DOI 10.4064/FM-15-1-301-309
  • [5] Bannas J., 1980, LECT NOTES PURE APPL, V60
  • [6] Fixed point theorems in partially ordered metric spaces and applications
    Bhaskar, T. Gnana
    Lakshmikantham, V.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (07) : 1379 - 1393
  • [7] Darbo G., 1955, Rend. Sem. Mat. Univ. Padova, V24, P84
  • [8] Darwish MA, 2008, DYNAM SYST APPL, V17, P539
  • [9] Das A, 2019, RACSAM REV R ACAD A, V113, P31, DOI 10.1007/s13398-017-0452-1
  • [10] Dhage BC, 2008, ELECTRON J QUAL THEO, P1