Parameter estimation for the Rosenblatt Ornstein-Uhlenbeck process with periodic mean

被引:7
|
作者
Shevchenko, Radomyra [1 ]
Tudor, Ciprian A. [2 ,3 ]
机构
[1] TU Dortmund, LSIV, Fak Math, Vogelpothsweg 87, D-44227 Dortmund, Germany
[2] Univ Lille, CNRS, Lab Paul Painleve, UMR 8524, F-59655 Villeneuve Dascq, France
[3] Romanian Acad, ISMMA, Bucharest, Romania
关键词
Rosenblatt process; Parameter estimation; Malliavin calculus; Multiple Wiener-Ito integrals; Strong consistency; Asymptotic normality; Ornstein-Uhlenbeck process; Periodic mean function; Least squares estimator; INTEGRALS; RESPECT;
D O I
10.1007/s11203-019-09200-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the least squares estimator for the drift parameter of the Langevin stochastic equation driven by the Rosenblatt process. Using the techniques of the Malliavin calculus and the stochastic integration with respect to the Rosenblatt process, we analyze the consistency and the asymptotic distribution of this estimator. We also introduce alternative estimators, which can be simulated, and we study their asymptotic properties.
引用
收藏
页码:227 / 247
页数:21
相关论文
共 50 条
  • [21] Moderate Deviations for the Parameter Estimation in the Fractional Ornstein-Uhlenbeck Process with H ∈ (0,1/2)
    Jiang, Hui
    Yang, Qing-shan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024,
  • [22] Distribution of the mean reversion estimator in the Ornstein-Uhlenbeck process
    Bao, Yong
    Ullah, Aman
    Wang, Yun
    ECONOMETRIC REVIEWS, 2017, 36 (6-9) : 1039 - 1056
  • [23] Parameter estimation for Ornstein-Uhlenbeck processes driven by fractional Levy process
    Shen, Guangjun
    Li, Yunmeng
    Gao, Zhenlong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [24] LIMIT BEHAVIOR OF THE ROSENBLATT ORNSTEIN-UHLENBECK PROCESS WITH RESPECT TO THE HURST INDEX
    Slaoui, M.
    Tudor, C. A.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 98 : 173 - 187
  • [25] The Least Squares Estimator for an Ornstein-Uhlenbeck Process Driven by a Hermite Process with a Periodic Mean
    Guangjun Shen
    Qian Yu
    Zheng Tang
    Acta Mathematica Scientia, 2021, 41 : 517 - 534
  • [26] On Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes
    Bercu, Bernard
    Proia, Frederic
    Savy, Nicolas
    STATISTICS & PROBABILITY LETTERS, 2014, 85 : 36 - 44
  • [27] Parameter estimation for nonergodic Ornstein-Uhlenbeck process driven by the weighted fractional Brownian motion
    Panhong Cheng
    Guangjun Shen
    Qin Chen
    Advances in Difference Equations, 2017
  • [28] Least squares estimator of fractional Ornstein-Uhlenbeck processes with periodic mean
    Salwa Bajja
    Khalifa Es-Sebaiy
    Lauri Viitasaari
    Journal of the Korean Statistical Society, 2017, 46 : 608 - 622
  • [29] Parameter estimation for nonergodic Ornstein-Uhlenbeck process driven by the weighted fractional Brownian motion
    Cheng, Panhong
    Shen, Guangjun
    Chen, Qin
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [30] Parameter least-squares estimation for time-inhomogeneous Ornstein-Uhlenbeck process
    Pramesti, Getut
    MONTE CARLO METHODS AND APPLICATIONS, 2023, 29 (01): : 1 - 32