Existence, stability, and convergence of solutions of discrete velocity models to the Boltzmann equation

被引:26
作者
Palczewski, A [1 ]
Schneider, J
机构
[1] Univ Warsaw, Dept Math, PL-02097 Warsaw, Poland
[2] LSITV Opt Math, F-83957 La Garde, France
关键词
Boltzmann-equation; discrete velocity models; convergence of discrete approximation; kinetic theory; numerical methods;
D O I
10.1023/A:1023000406921
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the convergence of finite-difference approximations to solutions of the Boltzmann equation. An essential step is the proof of convergence of discrete approximations to the collision integral. This proof relies on our previous results on the consistency of this approximation. For the space-homogeneous problem we prove strong convergence of our discrete approximation to the strong solution of the Boltzmann equation. In the space-dependent case we prove weak convergence to DiPerna-Lions solutions.
引用
收藏
页码:307 / 326
页数:20
相关论文
共 50 条
  • [41] New discrete model Boltzmann equations for arbitrary partitions of the velocity space
    Reiterer, P
    Reitshammer, C
    Schürrer, F
    Hanser, F
    Eitzenberger, T
    JOURNAL OF STATISTICAL PHYSICS, 2000, 98 (1-2) : 419 - 440
  • [42] Discrete Velocity Computations with Stochastic Variance Reduction of the Boltzmann Equation for Gas Mixtures
    Clarke, Peter
    Varghese, Philip
    Goldstein, David
    PROCEEDINGS OF THE 29TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS, 2014, 1628 : 1032 - 1039
  • [43] A discrete velocity direction model for the Boltzmann equation and applications to micro gas flows
    Zhang, Zhenyu
    Xu, Jianzhong
    Qi, Zhiguo
    Xi, Guang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (10) : 5256 - 5271
  • [44] Discrete velocity models without nonphysical invariants
    Bobylev, AV
    Cercignani, C
    JOURNAL OF STATISTICAL PHYSICS, 1999, 97 (3-4) : 677 - 686
  • [45] Discrete Velocity Models Without Nonphysical Invariants
    Alexander V. Bobylev
    Carlo Cercignani
    Journal of Statistical Physics, 1999, 97 : 677 - 686
  • [46] Convergence of A Distributional Monte Carlo Method for the Boltzmann Equation
    Schrock, Christopher R.
    Wood, Aihua W.
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (01) : 102 - 121
  • [47] STABILITY AND EXPONENTIAL CONVERGENCE IN L(P) FOR THE SPATIALLY HOMOGENEOUS BOLTZMANN-EQUATION
    WENNBERG, B
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (08) : 935 - 964
  • [48] Lyapunov Functionals and L1-Stability for Discrete Velocity Boltzmann Equations
    Seung-Yeal Ha
    Athanasios E. Tzavaras
    Communications in Mathematical Physics, 2003, 239 : 65 - 92
  • [49] A NEW STABILITY AND CONVERGENCE PROOF OF THE FOURIER-GALERKIN SPECTRAL METHOD FOR THE SPATIALLY HOMOGENEOUS BOLTZMANN EQUATION
    Hu, Jingwei
    Qi, Kunlun
    Yang, Tong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (02) : 613 - 633
  • [50] Improvement of a Discrete Velocity Boltzmann Equation Solver With Arbitrary Post-Collision Velocities
    Morris, A. B.
    Varghese, P. L.
    Goldstein, D. B.
    RAREFIED GAS DYNAMICS, 2009, 1084 : 458 - 463