Existence, stability, and convergence of solutions of discrete velocity models to the Boltzmann equation

被引:26
作者
Palczewski, A [1 ]
Schneider, J
机构
[1] Univ Warsaw, Dept Math, PL-02097 Warsaw, Poland
[2] LSITV Opt Math, F-83957 La Garde, France
关键词
Boltzmann-equation; discrete velocity models; convergence of discrete approximation; kinetic theory; numerical methods;
D O I
10.1023/A:1023000406921
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the convergence of finite-difference approximations to solutions of the Boltzmann equation. An essential step is the proof of convergence of discrete approximations to the collision integral. This proof relies on our previous results on the consistency of this approximation. For the space-homogeneous problem we prove strong convergence of our discrete approximation to the strong solution of the Boltzmann equation. In the space-dependent case we prove weak convergence to DiPerna-Lions solutions.
引用
收藏
页码:307 / 326
页数:20
相关论文
共 50 条
  • [31] Stability for Rayleigh–Benard Convective Solutions of the Boltzmann Equation
    L. Arkeryd
    R. Esposito
    R. Marra
    A. Nouri
    Archive for Rational Mechanics and Analysis, 2010, 198 : 125 - 187
  • [32] Monte Carlo solution of the Boltzmann equation via a discrete velocity model
    Morris, A. B.
    Varghese, P. L.
    Goldstein, D. B.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (04) : 1265 - 1280
  • [33] Conservation laws for polynomial Hamiltonians and for discrete models of the Boltzmann equation
    V. V. Vedenyapin
    Yu. N. Orlov
    Theoretical and Mathematical Physics, 1999, 121 : 1516 - 1523
  • [34] Linear Stability of Hyperbolic Moment Models for Boltzmann Equation
    Di, Yana
    Fan, Yuwei
    Li, Ruo
    Zheng, Lingchao
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2017, 10 (02) : 255 - 277
  • [35] Local existence of polynomial decay solutions to the Boltzmann equation for soft potentials
    Morimoto, Yoshinori
    Yang, Tong
    ANALYSIS AND APPLICATIONS, 2015, 13 (06) : 663 - 683
  • [36] On the Global Existence of Mild Solutions to the Boltzmann Equation for Small Data in LD
    Diogo Arsénio
    Communications in Mathematical Physics, 2011, 302 : 453 - 476
  • [37] STATIONARY SOLUTIONS TO THE EXTERIOR PROBLEMS FOR THE BOLTZMANN EQUATION, I. EXISTENCE
    Ukai, Seiji
    Yang, Tong
    Zhao, Huijiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (1-2) : 495 - 520
  • [38] Exponential Convergence to Equilibrium for Solutions of the Homogeneous Boltzmann Equation for Maxwellian Molecules
    Dolera, Emanuele
    MATHEMATICS, 2022, 10 (13)
  • [39] On measure solutions of the Boltzmann equation, Part II: Rate of convergence to equilibrium
    Lu, Xuguang
    Mouhot, Clement
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (11) : 3742 - 3810
  • [40] New Discrete Model Boltzmann Equations for Arbitrary Partitions of the Velocity Space
    P. Reiterer
    C. Reitshammer
    F. Schürrer
    F. Hanser
    T. Eitzenberger
    Journal of Statistical Physics, 2000, 98 : 419 - 440