Structural evolution and capacity degradation mechanism of LiNi0.6Mn0.2Co0.2O2 cathode materials

被引:117
作者
Ruan, Yanli [1 ,2 ,3 ]
Song, Xiangyun [3 ]
Fu, Yanbao [3 ]
Song, Chengyu [4 ]
Battaglia, Vincent [3 ]
机构
[1] State Key Lab Separat Membranes & Membrane Proc, Tianjin, Peoples R China
[2] Tianjin Polytech Univ, Sch Environm & Chem Engn, Tianjin, Peoples R China
[3] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
Structural evolution; Degradation mechanism; Cut-off voltage; Interfacial impedance; Particle cracking; ELECTROCHEMICAL PROPERTIES; SURFACE-CHEMISTRY; ION; LINI0.5CO0.2MN0.3O2; ELECTROLYTES; PERFORMANCE; BATTERIES; BEHAVIOR; LAYER;
D O I
10.1016/j.jpowsour.2018.08.056
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiNi0.6Mn0.2Co0.2O2 is a promising cathode material with a high capacity for Li-ion batteries. However, the rapid capacity degradation in the high-voltage cycles constrain their further applications. Accordingly, the performances of LiNi0.6Mn0.2Co0.2O2 have been systematically investigated using various microstructural characterizations as well as electrochemical analyses to explore its degradation mechanism. Our results indicate that the capacity decay of LiNi0.6Mn0.2Co0.2O2 strongly depends on the charge cut-off voltage. For the cell that is cycled at 4.2 or 4.5 V, the degradation mechanism is primarily due to transformation from layered to rock salt structure on the particle surface, increasing the charge transfer impedance. For the cell that is cycled at 4.8 V, another two reasons should be considered. The irreversible structural change in the bulk lattice of LiNi0.6Mn0.2Co0.2O2 during the high-degree delithiation process eventually disintegrates the secondary particles, resulting in the poor electrical contact between particles. Another one is that the insulating surface film which is generated on the surface of particles after cycling at 4.8 V increases the interfacial impedance of LiNi0.6Mn0.2Co0.2O2. All these factors contribute to the overall capacity degradation at high voltages.
引用
收藏
页码:539 / 548
页数:10
相关论文
共 45 条
[11]   Stabilizing interface layer of LiNi0.5CO0.2Mn0.3O2 cathode materials under high voltage using p-toluenesulfonyl isocyanate as film forming additive [J].
Dong, Peng ;
Wang, Ding ;
Yao, Yao ;
Li, Xue ;
Zhang, Yingjie ;
Ru, Juanjian ;
Ren, Ting .
JOURNAL OF POWER SOURCES, 2017, 344 :111-118
[12]   The influence of different conducting salts on the metal dissolution and capacity fading of NCM cathode material [J].
Gallus, Dennis Roman ;
Schmitz, Rene ;
Wagner, Ralf ;
Hoffmann, Bjoern ;
Nowak, Sascha ;
Cekic-Laskovic, Isidora ;
Schmitz, Raphael Wilhelm ;
Winter, Martin .
ELECTROCHIMICA ACTA, 2014, 134 :393-398
[13]   Nanoscale Phase Separation, Cation Ordering, and Surface Chemistry in Pristine Li1.2Ni0.2Mn0.6O2 for Li-Ion Batteries [J].
Gu, Meng ;
Genc, Arda ;
Belharouak, Ilias ;
Wang, Dapeng ;
Amine, Khalil ;
Thevuthasan, Suntharampillai ;
Baer, Donald R. ;
Zhang, Ji-Guang ;
Browning, Nigel D. ;
Liu, Jun ;
Wang, Chongmin .
CHEMISTRY OF MATERIALS, 2013, 25 (11) :2319-2326
[14]   On the Surface Chemistry of LiMO2 Cathode Materials (M = [MnNi] and [MnNiCo]): Electrochemical, Spectroscopic, and Calorimetric Studies [J].
Haik, Ortal ;
Leifer, Nicole ;
Samuk-Fromovich, Zvi ;
Zinigrad, Ella ;
Markovsky, Boris ;
Larush, Liraz ;
Goffer, Yossi ;
Goobes, Gil ;
Aurbach, Doron .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (10) :A1099-A1107
[15]   Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries [J].
Jung, Sung-Kyun ;
Gwon, Hyeokjo ;
Hong, Jihyun ;
Park, Kyu-Young ;
Seo, Dong-Hwa ;
Kim, Haegyeom ;
Hyun, Jangsuk ;
Yang, Wooyoung ;
Kang, Kisuk .
ADVANCED ENERGY MATERIALS, 2014, 4 (01)
[16]   Surface Engineering Strategies of Layered LiCoO2 Cathode Material to Realize High-Energy and High-Voltage Li-Ion Cells [J].
Kalluri, Sujith ;
Yoon, Moonsu ;
Jo, Minki ;
Park, Suhyeon ;
Myeong, Seungjun ;
Kim, Junhyeok ;
Dou, Shi Xue ;
Guo, Zaiping ;
Cho, Jaephil .
ADVANCED ENERGY MATERIALS, 2017, 7 (01)
[17]   A New Coating Method for Alleviating Surface Degradation of LiNi0.6Co0.2Mn0.2O2 Cathode Material: Nanoscale Surface Treatment of Primary Particles [J].
Kim, Hyejung ;
Kim, Min Gyu ;
Jeong, Hu Young ;
Nam, Haisol ;
Cho, Jaephil .
NANO LETTERS, 2015, 15 (03) :2111-2119
[18]   Microstructural study on degradation mechanism of layered LiNi0.6Co0.2Mn0.2O2 cathode materials by analytical transmission electron microscopy [J].
Kim, Na Yeon ;
Yim, Taeeun ;
Song, Jun Ho ;
Yu, Ji-Sang ;
Lee, Zonghoon .
JOURNAL OF POWER SOURCES, 2016, 307 :641-648
[19]   Post mortem analysis of fatigue mechanisms in LiNi0.8Co0.15Al0.05O2 - LiNi0.5Co0.2Mn0.3O2 - LiMn2O4/graphite lithium ion batteries [J].
Lang, Michael ;
Darma, Mariyam Susana Dewi ;
Kleiner, Karin ;
Riekehr, Lars ;
Mereacre, Liuda ;
Perez, Marta Avila ;
Liebau, Verena ;
Ehrenberg, Helmut .
JOURNAL OF POWER SOURCES, 2016, 326 :397-409
[20]   Development of Microstrain in Aged Lithium Transition Metal Oxides [J].
Lee, Eung-Ju ;
Chen, Zonghai ;
Noh, Hyung-Ju ;
Nam, Sang Cheol ;
Kang, Sung ;
Kim, Do Hyeong ;
Amine, Khalil ;
Sun, Yang-Kook .
NANO LETTERS, 2014, 14 (08) :4873-4880