Object Detection and Depth Estimation Approach Based on Deep Convolutional Neural Networks

被引:12
作者
Wang, Huai-Mu [1 ]
Lin, Huei-Yung [1 ,2 ]
Chang, Chin-Chen [3 ]
机构
[1] Natl Chung Cheng Univ, Dept Elect Engn, Chiayi 621, Taiwan
[2] Natl Chung Cheng Univ, Adv Inst Mfg High Tech Innovat, Chiayi 621, Taiwan
[3] Natl United Univ, Dept Comp Sci & Informat Engn, Miaoli 360, Taiwan
关键词
object detection; depth estimation; stereo vision; deep learning;
D O I
10.3390/s21144755
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, we present a real-time object detection and depth estimation approach based on deep convolutional neural networks (CNNs). We improve object detection through the incorporation of transfer connection blocks (TCBs), in particular, to detect small objects in real time. For depth estimation, we introduce binocular vision to the monocular-based disparity estimation network, and the epipolar constraint is used to improve prediction accuracy. Finally, we integrate the two-dimensional (2D) location of the detected object with the depth information to achieve real-time detection and depth estimation. The results demonstrate that the proposed approach achieves better results compared to conventional methods.
引用
收藏
页数:17
相关论文
共 35 条
[21]  
Naghavi SH, 2017, IRAN CONF MACH, P154
[22]   Automata design for honeybee search algorithm and its applications to 3D scene reconstruction and video tracking [J].
Perez-Cham, Oscar E. ;
Puente, Cesar ;
Soubervielle-Montalvo, Carlos ;
Olague, Gustavo ;
Castillo-Barrera, Francisco-Edgar ;
Nunez-Varela, Jose ;
Limon-Romero, Jorge .
SWARM AND EVOLUTIONARY COMPUTATION, 2021, 61
[23]   Unsupervised Adversarial Depth Estimation using Cycled Generative Networks [J].
Pilzer, Andrea ;
Xu, Dan ;
Puscas, Mihai Marian ;
Ricci, Elisa ;
Sebe, Nicu .
2018 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2018, :587-595
[24]  
Poggi M, 2018, IEEE INT C INT ROBOT, P5848, DOI 10.1109/IROS.2018.8593814
[25]   You Only Look Once: Unified, Real-Time Object Detection [J].
Redmon, Joseph ;
Divvala, Santosh ;
Girshick, Ross ;
Farhadi, Ali .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :779-788
[26]   Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks [J].
Ren, Shaoqing ;
He, Kaiming ;
Girshick, Ross ;
Sun, Jian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (06) :1137-1149
[27]   Rethinking the Inception Architecture for Computer Vision [J].
Szegedy, Christian ;
Vanhoucke, Vincent ;
Ioffe, Sergey ;
Shlens, Jon ;
Wojna, Zbigniew .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2818-2826
[28]  
Teed Zachary, 2018, ARXIV181204605
[29]  
Tian Wanxin, 2018, ARXIV181108557
[30]   Real-time self-adaptive deep stereo [J].
Tonioni, Alessio ;
Tosi, Fabio ;
Poggi, Matteo ;
Mattoccia, Stefano ;
di Stefano, Luigi .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :195-204