Object Detection and Depth Estimation Approach Based on Deep Convolutional Neural Networks

被引:12
作者
Wang, Huai-Mu [1 ]
Lin, Huei-Yung [1 ,2 ]
Chang, Chin-Chen [3 ]
机构
[1] Natl Chung Cheng Univ, Dept Elect Engn, Chiayi 621, Taiwan
[2] Natl Chung Cheng Univ, Adv Inst Mfg High Tech Innovat, Chiayi 621, Taiwan
[3] Natl United Univ, Dept Comp Sci & Informat Engn, Miaoli 360, Taiwan
关键词
object detection; depth estimation; stereo vision; deep learning;
D O I
10.3390/s21144755
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, we present a real-time object detection and depth estimation approach based on deep convolutional neural networks (CNNs). We improve object detection through the incorporation of transfer connection blocks (TCBs), in particular, to detect small objects in real time. For depth estimation, we introduce binocular vision to the monocular-based disparity estimation network, and the epipolar constraint is used to improve prediction accuracy. Finally, we integrate the two-dimensional (2D) location of the detected object with the depth information to achieve real-time detection and depth estimation. The results demonstrate that the proposed approach achieves better results compared to conventional methods.
引用
收藏
页数:17
相关论文
共 35 条
[1]  
[Anonymous], 2018, BDD100K DIVERSE DRIV
[2]  
Dai JF, 2016, ADV NEUR IN, V29
[3]  
Everingham M., 2010, INT J COMPUT VISION, V88, P303, DOI DOI 10.1007/s11263-009-0275-4
[4]  
Felzenszwalb P, 2008, PROC CVPR IEEE, P1984
[5]  
Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
[6]   Unsupervised Monocular Depth Estimation with Left-Right Consistency [J].
Godard, Clement ;
Mac Aodha, Oisin ;
Brostow, Gabriel J. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6602-6611
[7]   Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1026-1034
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]
[10]  
Huang PY, 2019, IEEE SYS MAN CYBERN, P921, DOI 10.1109/SMC.2019.8913982