Air-Stable Conductive Polymer Ink for Printed Wearable Micro-Supercapacitors

被引:92
作者
Chu, Xiang [1 ]
Chen, Guorui [2 ]
Xiao, Xiao [2 ]
Wang, Zixing [1 ]
Yang, Tao [1 ]
Xu, Zhong [1 ]
Huang, Haichao [1 ]
Wang, Yihan [1 ]
Yan, Cheng [1 ]
Chen, Ningjun [1 ]
Zhang, Haitao [1 ]
Yang, Weiqing [1 ]
Chen, Jun [2 ]
机构
[1] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Minist Educ, Chengdu 610031, Peoples R China
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
基金
中国国家自然科学基金;
关键词
conductive polymer inks; electrochemical energy storage; polyaniline nanosheets; printed electronics; wearable electronics; HIGH-PERFORMANCE; POLYANILINE; SOLAR; ACID;
D O I
10.1002/smll.202100956
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Printed electronics are expected to facilitate the widespread distributed wearable electronics in the era of the Internet of things. However, developing cheap and stable electrode inks remains a significant challenge in the printed electronics industry and academic community. Here, overcoming the weak hydrophilicity of polyaniline, a low-cost, easy-fabricating, and air-stable conducting polymer (CP) ink is devised through a facile assemble-disperse strategy delivering a high conductivity in the order of 10(-2) S cm(-1) along with a remarkable specific capacitance of 386.9 F g(-1) at 0.5 A g(-1) (dehydrated state). The additive-free CP ink is directly employed to print wearable micro-supercapacitors (MSCs) via the spray-coating method, which deliver a high areal capacitance (96.6 mF cm(-2)) and volumetric capacitance (26.0 F cm(-3)), outperforming most state-of-the-art CP-based supercapacitors. This work paves a new approach for achieving scalable MSCs, thus rendering a cost-effective, environmentally friendly, and pervasive energy solution for next-generation distributed electronics.
引用
收藏
页数:8
相关论文
共 52 条
[1]   Turning Trash into Treasure: Additive Free MXene Sediment Inks for Screen-Printed Micro-Supercapacitors [J].
Abdolhosseinzadeh, Sina ;
Schneider, Rene ;
Verma, Anand ;
Heier, Jakob ;
Nuesch, Frank ;
Zhang, Chuanfang .
ADVANCED MATERIALS, 2020, 32 (17)
[2]  
Babazadeh M, 2007, IRAN POLYM J, V16, P389
[3]   Scalable Production of Graphene Inks via Wet-jet Milling Exfoliation for Screen-Printed Micro-Supercapacitors [J].
Bellani, Sebastiano ;
Petroni, Elisa ;
Castillo, Antonio Esau Del Rio ;
Curreli, Nicola ;
Martin-Garcia, Beatriz ;
Oropesa-Nunez, Reinier ;
Prato, Mirko ;
Bonaccorso, Francesco .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (14)
[4]   Smart Textiles for Electricity Generation [J].
Chen, Guorui ;
Li, Yongzhong ;
Bick, Michael ;
Chen, Jun .
CHEMICAL REVIEWS, 2020, 120 (08) :3668-3720
[5]   Sand-Milling Fabrication of Screen-Printable Graphene Composite Inks for High-Performance Planar Micro-Supercapacitors [J].
Chen, Huqiang ;
Chen, Songbo ;
Zhang, Yujin ;
Ren, Hao ;
Hu, Xinjun ;
Bai, Yongxiao .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (50) :56319-56329
[6]  
Chen J, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.138, 10.1038/nenergy.2016.138]
[7]   One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties [J].
Chen, Xiangnan ;
Meng, Fanchen ;
Zhou, Zuowan ;
Tian, Xin ;
Shan, Liming ;
Zhu, Shibu ;
Xu, Xiaoling ;
Jiang, Man ;
Wang, Li ;
Hui, David ;
Wang, Yong ;
Lu, Jun ;
Gou, Jihua .
NANOSCALE, 2014, 6 (14) :8140-8148
[8]  
Christophe L., 2019, ENERG ENVIRON SCI, V12, P96
[9]   An ultrathin robust polymer membrane for wearable solid-state electrochemical energy storage [J].
Chu, Xiang ;
Zhao, Xun ;
Zhou, Yihao ;
Wang, Yihan ;
Han, Xueling ;
Zhou, Yilin ;
Ma, Jingxin ;
Wang, Zixing ;
Huang, Haichao ;
Xu, Zhong ;
Yan, Cheng ;
Zhang, Haitao ;
Yang, Weiqing ;
Chen, Jun .
NANO ENERGY, 2020, 76
[10]   Ternary Electrification Layered Architecture for High-Performance Triboelectric Nanogenerators [J].
Deng, Weili ;
Zhou, Yihao ;
Zhao, Xun ;
Zhang, Songlin ;
Zou, Yongjiu ;
Xu, Jing ;
Yeh, Min-Hsin ;
Guo, Hengyu ;
Chen, Jun .
ACS NANO, 2020, 14 (07) :9050-9058