The Nakayama Automorphism of the Almost Calabi-Yau Algebras Associated to SU(3) Modular Invariants

被引:11
作者
Evans, David E. [1 ]
Pugh, Mathew [1 ]
机构
[1] Cardiff Univ, Sch Math, Cardiff CF24 4AG, S Glam, Wales
关键词
ALPHA-INDUCTION; PREPROJECTIVE ALGEBRAS; HOCHSCHILD COHOMOLOGY; Q-ANALOG; SUBFACTORS; CLASSIFICATION; GRAPHS; INDEX; NETS; REPRESENTATIONS;
D O I
10.1007/s00220-011-1389-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We determine the Nakayama automorphism of the almost Calabi-Yau algebra A associated to the braided subfactors or nimrep graphs associated to each SU(3) modular invariant. We use this to determine a resolution of A as an A-A bimodule, which will yield a projective resolution of A.
引用
收藏
页码:179 / 222
页数:44
相关论文
共 74 条
[1]   Boundary conditions in rational conformal field theories (vol B570, pg 525, 2000) [J].
Behrend, RE ;
Pearce, PA ;
Petkova, VB ;
Zuber, JB .
NUCLEAR PHYSICS B, 2000, 579 (03) :707-773
[2]  
BIONNADAL J, 1991, CURRENT TOPICS IN OPERATOR ALGEBRAS, P104
[3]   Modular invariants from subfactors:: Type I coupling matrices and intermediate subfactors [J].
Böckenhauer, J ;
Evans, DE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 213 (02) :267-289
[4]   Modular invariants, graphs and α-induction for nets of subfactors I [J].
Bockenhauer, J ;
Evans, DE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 197 (02) :361-386
[5]   Chiral structure of modular invariants for subfactors [J].
Böckenhauer, J ;
Evans, DE ;
Kawahigashi, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (03) :733-784
[6]   On α-induction, chiral generators and modular invariants for subfactors [J].
Böckenhauer, J ;
Evans, DE ;
Kawahigashi, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 208 (02) :429-487
[7]   Modular invariants, graphs and α-induction for nets of subfactors.: II [J].
Böckenhauer, J ;
Evans, DE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (01) :57-103
[8]   Modular invariants, graphs and α-induction for nets of subfactors.: III [J].
Böckenhauer, J ;
Evens, DE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 205 (01) :183-228
[9]  
Bockenhauer J., 2002, Contemp. Math., V294, P95, DOI [10.1090/conm/294/04971, DOI 10.1090/CONM/294/04971]
[10]  
Bockenhauer J., 2001, MATH PHYS MATH PHYS, V30, P11