High energy blow up for two-dimensional generalized exponential-type Boussinesq equation

被引:1
作者
Guo, Siyan [1 ]
Yang, Yanbing [1 ]
机构
[1] Harbin Engn Univ, Coll Math Sci, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Boussinesq equation; Exponential nonlinearity; Finite time blow up; Arbitrarily positive initial energy; POTENTIAL WELL METHOD; GLOBAL EXISTENCE; CAUCHY-PROBLEM; NONEXISTENCE; SCATTERING;
D O I
10.1016/j.na.2020.111864
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite time blow up result for the Cauchy problem of two-dimensional generalized Boussinesq-type equation with exponential type source term is considered in this paper. Based on an adapted concave method, we derive a sufficient condition on initial data leading to the arbitrarily positive initial energy finite time blow up. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 37 条
[1]   A SHARP EIGENVALUE THEOREM FOR FRACTIONAL ELLIPTIC EQUATIONS [J].
Bisci, Giovanni Molica ;
Radulescu, Vicentiu D. .
ISRAEL JOURNAL OF MATHEMATICS, 2017, 219 (01) :331-351
[2]   NONTRIVIAL SOLUTION OF SEMILINEAR ELLIPTIC EQUATION WITH CRITICAL EXPONENT IN R2 [J].
CAO, DM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (3-4) :407-435
[3]   Well-posedness and nonlinear smoothing for the "good" Boussinesq equation on the half-line [J].
Compaan, E. ;
Tzirakis, N. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (12) :5824-5859
[4]   Instability and stability properties of traveling waves for the double dispersion equation [J].
Erbay, H. A. ;
Erbay, S. ;
Erkip, A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 133 :1-14
[5]   Large data asymptotic behaviour for the generalized Boussinesq equation [J].
Farah, Luiz Gustavo .
NONLINEARITY, 2008, 21 (02) :191-209
[6]   Local Solutions in Sobolev Spaces with Negative Indices for the Good Boussinesq Equation [J].
Farah, Luiz Gustavo .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (01) :52-73
[7]  
Kalantarov VK., 1978, J. Sov. Math, V10, P53, DOI DOI 10.1007/BF01109723
[8]   Global existence to generalized Boussinesq equation with combined power-type nonlinearities [J].
Kutev, N. ;
Kolkovska, N. ;
Dimova, M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (01) :427-444
[9]  
Lian W., 2019, ADV CALC VAR, DOI [10.1515/acv-2019-0039, DOI 10.1515/ACV-2019--0039]
[10]   Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term [J].
Lian, Wei ;
Xu, Runzhang .
ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) :613-632